1 |
Pepin N, Bradley R S, Diaz H F, et al. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change, 2015, 5(5): 424-430.
|
2 |
Biskaborn B K, Smith S L, Noetzli J, et al. Permafrost is warming at a global scale[J]. Nature Communications, 2019, 10(1): 1-11.
|
3 |
Peng X, Zhang T, Frauenfeld O W, et al. Spatiotemporal changes in active layer thickness under contemporary and projected climate in the Northern Hemisphere[J]. Journal of Climate, 2018, 31(1): 251-266.
|
4 |
Guo D, Wang H. Simulated historical (1901—2010) changes in the permafrost extent and active layer thickness in the Northern Hemisphere[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(22): 12285-12295.
|
5 |
Zhao Lin, Hu Guojie, Zou Defu, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1233-1246.
|
|
赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊, 2019, 34(11): 1233-1246.
|
6 |
Olefeldt D, Goswami S, Grosse G, et al. Circumpolar distribution and carbon storage of thermokarst landscapes[J]. Nature Communications, 2016, 7(1): 1-11.
|
7 |
Fritz M, Vonk J E, Lantuit H. Collapsing arctic coastlines[J]. Nature Climate Change, 2017, 7(1): 6-7.
|
8 |
Lewkowicz A G, Way R G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment[J]. Nature Communications, 2019, 10(1): 1-11.
|
9 |
Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China [M]. Beijing: Science Press, 2000.
|
|
周幼吾, 郭东信, 邱国庆, 等.中国冻土[M]. 北京: 科学出版社, 2000.
|
10 |
Shiklomanov N I, Streletskiy D A, Nelson F E. Northern hemisphere component of the global circumpolar active layer monitoring (CALM) program[C]//International Conference on Permafrost, Salekhard, Russia, June 25-29, 2012, 1: 377-382.
|
11 |
Zhao L, Wu Q, Marchenko S S, et al. Thermal state of permafrost and active layer in Central Asia during the International Polar Year[J]. Permafrost and Periglacial Processes, 2010, 21(2): 198-207.
|
12 |
Li R, Zhao L, Ding Y J, et al. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region[J]. Chinese Science Bulletin, 2012, 57(35): 4609-4616.
|
13 |
Wu Q, Zhang T. Changes in active layer thickness over the Qinghai‐Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D9): 736-744.
|
14 |
Xu Xiaoming, Wu Qingbai, Zhang Zhongqiong. Response of active layer thickness on the Qinghai-Tibet Plateau to climate change[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 1-8.
|
|
徐晓明, 吴青柏, 张中琼. 青藏高原多年冻土活动层厚度对气候变化的响应[J]. 冰川冻土, 2017, 39(1): 1-8.
|
15 |
Brown J, Hinkel K M, Nelson F E. The circumpolar active layer monitoring (CALM) program: research designs and initial results[J]. Polar Geography, 2000, 24(3): 166-258.
|
16 |
Luo D, Wu Q, Jin H, et al. Recent changes in the active layer thickness across the northern hemisphere[J]. Environmental Earth Sciences, 2016, 75(7): 555.
|
17 |
Streletskiy D A, Sherstiukov A B, Frauenfeld O W, et al. Changes in the 1963—2013 shallow ground thermal regime in Russian permafrost regions[J]. Environmental Research Letters, 2015, 10(12): 125005.
|
18 |
Smith S L, Romanovsky V E, Lewkowicz A G, et al. Thermal state of permafrost in North America: a contribution to the International Polar Year[J]. Permafrost and Periglacial Processes, 2010, 21(2): 117-135.
|
19 |
Kaverin D, Mazhitova G, Pastukhov A, et al. The transition layer in permafrost-affected soils, northeast European Russia[C]//Proc. 10th Int. Conf. on Permafrost. Salekhard, Yamal-Nenets Autonomous District, Russia: The Northern Publisher Salekhard, 2012, 2: 145-148.
|
20 |
Smith S L, Wolfe S A, Riseborough D W, et al. Active‐layer characteristics and summer climatic indices, Mackenzie Valley, Northwest Territories, Canada[J]. Permafrost and Periglacial Processes, 2009, 20(2): 201-220.
|
21 |
Wu Qingbai, Shen Yongping, Shi Bin. Relationship between frozen soil together with its water-heat process and ecological environment in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2003, 25(3): 244-255.
|
|
吴青柏, 沈永平, 施斌. 青藏高原冻土及水热过程与寒区生态环境的关系[J]. 冰川冻土, 2003, 25(3): 250-255.
|
22 |
Yang Meixue, Yao Tandong, He Yuanqing. The role of soil moisture-energy distribution and melting-freezing processes on seasonal shift in Tibetan Plateau[J]. Journal of Mountain Science, 2002, 20(5): 553-558.
|
|
杨梅学, 姚檀栋, 何元庆. 青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J]. 山地学报, 2002, 20(5): 553-558.
|
23 |
Jin Huijun, Li Shuxun, Wang Shaoling. Impacts of climatic change on permafrost and cold regions environments in China[J]. Acta Geographica Sinica, 2000, 55(2): 161-173.
|
|
金会军, 李述训, 王绍令, 等. 气候变化对中国多年冻土和寒区环境的影响[J]. 地理学报, 2000, 55(2): 161-173.
|
24 |
Voitkovskiy K. Fundamentals of glaciology[M]. Nauka, Moscow, 1999.
|
25 |
Kade A, Walker D A. Experimental alteration of vegetation on nonsorted circles: Effects on cryogenic activity and implications for climate change in the Arctic[J]. Arctic, Antarctic, and Alpine Research, 2008, 40(1): 96-103.
|
26 |
Li Ren, Zhao Lin, Ding Yongjian, et al. Study on soil thermodynamic characteristics at different underlying surface in northern Qinghai-Tibetan Plateau[J]. Acta Energiae Solaris Sinica, 2013, 34(6):1076-1084.
|
|
李韧, 赵林, 丁永建, 等. 青藏高原北部不同下垫面土壤热力特性研究[J]. 太阳能学报, 2013, 34(6): 1076-1084.
|
27 |
Chang Xiaoli, Jin Huijun, Wang Yongping, et al. Influences of vegetation on permafrost: A review[J]. Acta Ecologica Sinica, 2012, 32(24): 7981-7990.
|
|
常晓丽, 金会军, 王永平, 等. 植被对多年冻土的影响研究进展[J]. 生态学报, 2012, 32(24): 7981-7990.
|
28 |
Shiklomanov N I, Streletskiy D A, Nelson F E, et al. Decadal variations of active‐layer thickness in moisture‐controlled landscapes, Barrow, Alaska[J]. Journal of Geophysical Research: Biogeosciences, 2010, 115(G4): 3538-3549.
|
29 |
Jiao Yongliang, Li Ren, Zhao Lin, et al. Processes of soil thawing-freezing and features of soil moisture migration in the permafrost active layer[J]. Journal of Glaciology and Geocryology, 2014, 36(2): 237-247.
|
|
焦永亮, 李韧, 赵林, 等. 多年冻土区活动层冻融状况及土壤水分运移特征[J]. 冰川冻土, 2014, 36(2): 237-247.
|
30 |
Li Ren, Zhao Lin, Ding Yongjian, et al. A study on soil thermodynamic characteristics of active layer in northern Tibetan Plateau[J]. Chinese Journal of Geophysics-Chinese Edition, 2010, 53(5): 1060-1072.
|
|
李韧, 赵林, 丁永建, 等. 青藏高原北部活动层土壤热力特性的研究[J]. 地球物理学报, 2010, 53(5): 1060-1072.
|
31 |
Zhang Wei, Zhou Jian, Wang Genxu, et al. Monitoring and modeling the influence of snow cover and organic soil on the active layer of permafrost on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 528-540.
|
|
张伟, 周剑, 王根绪, 等. 积雪和有机质土对青藏高原冻土活动层的影响[J]. 冰川冻土, 2013, 35(3): 528-540.
|
32 |
Zhang T. Influence of the seasonal snow cover on the ground thermal regime: an overview[J]. Reviews of Geophysics, 2005, 43(4): RG4002.
|
33 |
Shiklomanov N I, Streletskiy D A, Swales T B, et al. Climate change and stability of urban infrastructure in Russian permafrost regions: prognostic assessment based on GCM climate projections[J]. Geographical Review, 2017, 107(1): 125-142.
|
34 |
Lin Zhanju, Niu Fujun, Xu Jian, et al. The effect of embankment construction on permafrost in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2009, 31(6): 1127-1136.
|
|
林战举, 牛富俊, 许健, 等. 路基施工对青藏高原多年冻土的影响[J]. 冰川冻土, 2009, 31(6): 1127-1136.
|
35 |
Liu Yongzhi, Wu Qingbai, Zhang Jianming, et al. Deformation of highway roadbed in permafrost regions of the Tibetan Plateau[J]. Journal of Glaciolgy and Geocryology, 2002, 24(1): 10-15.
|
|
刘永智, 吴青柏, 张建明, 等. 青藏高原多年冻土地区公路路基变形[J]. 冰川冻土, 2002, 24(1): 10-15.
|
36 |
Wang Genxu, Yao Jinzhong, Guo Zhenggang, et al. Changes of permafrost ecosystem under the influence of human engineering activities and its enlightenment to railway construction[J]. Science Bulletin, 2004, 49(15): 1556-1564.
|
|
王根绪, 姚进忠, 郭正刚, 等. 人类工程活动影响下冻土生态系统的变化及其对铁路建设的启示[J]. 科学通报, 2004, 49(15): 1556-1564.
|
37 |
Wang Genxu, Ma Haiyan, Wang Yibo, et al. Impacts of land use change on environment in the middle reaches of the Heihe River[J]. Journal of Glaciology and Geocryology, 2003, 25(4): 360-367.
|
|
王根绪, 马海燕, 王一博, 等. 黑河流域中游土地利用变化的环境影响[J]. 冰川冻土, 2003, 25(4): 359-367.
|
38 |
Wang Kun, Huang Zhenfang, Cao Fang. Spatial pattern and influencing factors of carbon dioxide emissions efficiency of tourism in China[J]. Acta Ecologic a Sinica, 2015, 35(21): 7150-7160.
|
|
王坤, 黄震方, 曹芳东. 中国旅游业碳排放效率的空间格局及其影响因素[J]. 生态学报, 2015, 35(21): 7150-7160.
|
39 |
Wang Qingfeng, Zhang Tingjun, Wu Jichun, et al. Investigation on permafrost distribution over the upper reaches of the Heihe River in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 19-29.
|
|
王庆峰, 张廷军, 吴吉春, 等. 祁连山区黑河上游多年冻土分布考察[J]. 冰川冻土, 2013, 35(1): 19-29.
|
40 |
Cao B, Zhang T, Peng X, et al. Thermal characteristics and recent changes of permafrost in the upper reaches of the Heihe River basin, Western China[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(15): 7935-7949.
|
41 |
Wu Jichun, Sheng Yu, Yu Hui, et al. Permafrost in the middle east section of Qilian Mountains (I): distribution of permafrost[J]. Journal of Glaciology and Geocryology, 2007, 29(3): 418-425.
|
|
吴吉春, 盛煜, 于晖, 等. 祁连山中东部的冻土特征(I): 多年冻土分布[J]. 冰川冻土, 2007, 29(3): 418-425.
|
42 |
Mu Cuicui, Zhang Tingjun, Cao Bin, et al. Study of the organic carbon storage in the active layer of the permafrost over the Eboling Mountain in the upper reaches of the Heihe River in the eastern Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 1-9.
|
|
牟翠翠, 张廷军, 曹斌, 等. 祁连山区黑河上游俄博岭多年冻土区活动层碳储量研究[J]. 冰川冻土, 2013, 35(1): 1-9.
|
43 |
Zou D, Zhao L, Sheng Y, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2527-2542.
|
44 |
Biskaborn B K, Lanckman J P, Lantuit H, et al. The new database of the Global Terrestrial Network for Permafrost (GTN-P)[J]. Earth System Science Data, 2015, 7(2): 245-259.
|
45 |
Fagan J D, Nelson F E. Spatial sampling design in the Circumpolar Active Layer Monitoring programme[J]. Permafrost and Periglacial Processes, 2017, 28(1): 42-51.
|
46 |
Mackay J R. Active layer changes (1968 to 1993) following the forest-tundra fire near Inuvik, NWT, Canada[J]. Arctic and Alpine Research, 1995, 27(4): 323-336.
|
47 |
Cao Bin. Conditions and Dynamics of Permafrost in the Qilian Mountains over the upper reaches of Heihe River basin[D]. Lanzhou: Lanzhou University, 2018.
|
|
曹斌. 黑河上游祁连山区多年冻土状态与动态研究[D]. 兰州: 兰州大学, 2018.
|
48 |
Schuh C, Frampton A, Christiansen H H. Soil moisture redistribution and its effect on inter-annual active layer temperature and thickness variations in a dry loess terrace in Adventdalen, Svalbard[J]. The Cryosphere, 2017, 11(1): 635-651.
|
49 |
Zhang Zhongqiong, Wu Qingbai. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as climate warming[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 505-511.
|
|
张中琼,吴青柏.气候变化情景下青藏高原多年冻土活动层厚度变化预测[J]. 冰川冻土, 2012, 34(3): 505-511.
|
50 |
Romanovsky V E, Osterkamp T E. Thawing of the active layer on the coastal plain of the Alaskan Arctic[J]. Permafrost and Periglacial Processes, 1997, 8(1): 1-22.
|
51 |
Osterkamp T E, Romanovsky V E. Freezing of the active layer on the coastal plain of the Alaskan Arctic[J]. Permafrost and Periglacial Processes, 1997, 8(1): 23-44.
|
52 |
Hinkel K M, Paetzold F, Nelson F E, et al. Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993—1999[J]. Global and Planetary Change, 2001, 29(3): 293-309.
|
53 |
Zhao, Lin, Cheng Guodong, Li Shuxun, et al. Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau[J]. Chinese Science Bulletin, 2000, 45 (11): 2181-2187.
|
|
赵林, 程国栋, 李述训, 等. 青藏高原五道梁附近多年冻土活动层冻结和融化过程[J]. 科学通报, 2000, 45(11): 1205-1205.
|
54 |
Wang G, Li Y, Hu H, et al. Synergistic effect of vegetation and air temperature changes on soil water content in alpine frost meadow soil in the permafrost region of Qinghai‐Tibet[J]. Hydrological Processes, 2008, 22(17): 3310-3320.
|