冰川冻土 ›› 2022, Vol. 44 ›› Issue (1): 275-287.doi: 10.7522/j.issn.1000-0240.2022.0036
刘金平1,2(), 任艳群1(
), 张万昌2, 陶辉3, 易路4
收稿日期:
2021-04-12
修回日期:
2021-06-15
出版日期:
2022-02-28
发布日期:
2022-03-28
通讯作者:
任艳群
E-mail:liujp@radi.ac.cn;renyanqun@ncwu.edu.cn
作者简介:
刘金平,讲师,主要从事全球变化水循环研究. E-mail: liujp@radi.ac.cn
基金资助:
Jinping LIU1,2(), Yanqun REN1(
), Wanchang ZHANG2, Hui TAO3, Lu YI4
Received:
2021-04-12
Revised:
2021-06-15
Online:
2022-02-28
Published:
2022-03-28
Contact:
Yanqun REN
E-mail:liujp@radi.ac.cn;renyanqun@ncwu.edu.cn
摘要:
典型高原寒区雅鲁藏布江流域径流变化是反映该区域气候和下垫面变化的重要指标。在全球升温背景下,由于观测资料稀缺,导致缺乏针对整个流域的气候和下垫面变化对径流影响的研究。因此,本研究基于1986—2010年的气象数据和奴下水文站月尺度、动态土地利用数据等,利用改进的水文模型并结合不同的模拟策略厘清了流域1991—2010年不同时段间气候和下垫面变化对径流的影响。结果表明:在1991—2010年期间,不同时段间气候和下垫面变化对径流变化的贡献率差异较大,气候变化对径流变化的贡献率高于下垫面变化,且使径流量增加。从空间上看,气候变化对流域产流的贡献率在上游和中游都较大,在下游东北部的贡献率较小,而在该区域下垫面变化的贡献率较大。雪冰融水径流呈增加的趋势,对年径流的平均贡献率在21.1%~48.6%范围内,多年平均贡献率为33.6%;雪冰融水径流一般从4月开始增大,8月达到最大,10月达到消融末期。本研究的开展和发现既是雅鲁藏布江流域水文、水资源基础性研究的需要,具有重要的理论研究意义,同时也可为该流域的水资源保护、规划与管理提供科学理论和决策依据,具有重要的现实意义。
中图分类号:
刘金平, 任艳群, 张万昌, 陶辉, 易路. 雅鲁藏布江流域气候和下垫面变化对径流的影响研究[J]. 冰川冻土, 2022, 44(1): 275-287.
Jinping LIU, Yanqun REN, Wanchang ZHANG, Hui TAO, Lu YI. Study on the influence of climate and underlying surface change on runoff in the Yarlung Zangbo River basin[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 275-287.
表2
气候变化和下垫面变化对径流变化影响评估情景方案设计"
情景 | 土地利用 | 气象数据 | 代表情况 | 研究方案 | 研究对象 | 备注 |
---|---|---|---|---|---|---|
S1 | 1990年 | 1991—1995年 | 实际 | / | / | / |
S2 | 1995年 | 1996—2000年 | 实际 | S2-S1 | 综合变化 | 时段2—时段1 |
S3 | 2000年 | 2001—2005年 | 实际 | S3-S2 | 综合变化 | 时段3—时段2 |
S4 | 2010年 | 2006—2010年 | 实际 | S4-S3 S4-S1 | 综合变化 | 时段4—时段3 时段4—时段1 |
S5 | 1990年 | 2006—2010年 | 模拟 | S4-S5 | 下垫面变化 | 气象数据固定(相对S4) |
S6 | 1990年 | 1996—2000年 | 模拟 | S6-S1 | 气候变化 | 下垫面固定(相对S1) |
S7 | 1995年 | 2001—2005年 | 模拟 | S7-S2 | 气候变化 | 下垫面固定(相对S2) |
S8 | 2000年 | 2006—2010年 | 模拟 | S8-S3 | 气候变化 | 下垫面固定(相对S3) |
表3
1990年、1995年、2000年和2010年土地利用类型面积及不同时期面积变化"
土地覆被类型 | 土地覆被面积/km2 | 变化面积/km2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
一级类型 | 二级类型 | 1990年 | 1995年 | 2000年 | 2010年 | 1990—1995年 | 1995—2000年 | 2000—2010年 | 1990—2010年 | ||
耕地 | 水田 | 72.2 | 0 | 83.9 | 79.7 | -72.2 | 83.9 | -4.2 | 7.5 | ||
旱地 | 3 180.6 | 2 137.8 | 3 162.3 | 3 153.1 | -1 042.8 | 1 024.5 | -9.2 | -27.5 | |||
合计 | 3 252.9 | 2 137.8 | 3 246.2 | 3 232.8 | -1 115.1 | 1 108.4 | -13.4 | -20.1 | |||
林地 | 有林地 | 29 475.3 | 27 479.8 | 29 373.9 | 29 356.1 | -1 995.5 | 1 894.1 | -17.8 | -119.2 | ||
灌林地 | 5 078.9 | 10 881.3 | 5 172.6 | 5 172.6 | 5 802.4 | -5 708.7 | 0 | 93.7 | |||
疏林地 | 1 069.2 | 2 244.1 | 1 053.7 | 1 053.7 | 1 174.9 | -1 190.4 | 0 | -15.5 | |||
其他林地 | 24.9 | 89.7 | 153.6 | 174.0 | 64.8 | 63.9 | 20.4 | 149.1 | |||
合计 | 35 648.3 | 40 694.8 | 35 753.7 | 35 756.4 | 5 046.5 | -4 941.1 | 2.7 | 108.1 | |||
草地 | 高覆盖度草地 | 86 680.9 | 37 977.7 | 86 495.9 | 86 489.5 | -48 703.2 | 48 518.2 | -6.4 | -191.4 | ||
中覆盖度草地 | 48 460.2 | 67 003.0 | 48 614.3 | 48 605.4 | 18 542.8 | -18 388.7 | -8.9 | 145.2 | |||
低覆盖度草地 | 24 955.3 | 4 2704.7 | 24 874.2 | 24 862.7 | 17 749.4 | -17 830.5 | -11.5 | -92.6 | |||
合计 | 160 096.4 | 147 685.5 | 159 984.4 | 159 957.5 | -12 410.9 | 12 298.9 | -26.9 | -138.9 | |||
水域 | 河渠 | 713.4 | 596.1 | 739.3 | 740.5 | -117.3 | 143.2 | 1.2 | 27.1 | ||
湖泊 | 1 810.3 | 1 716.4 | 1 827.4 | 1 828.3 | -93.9 | 111.0 | 0.9 | 18.0 | |||
水库坑塘 | 2.0 | 13.9 | 6.0 | 3.6 | 11.9 | -7.9 | -2.4 | 1.6 | |||
冰川 | 7 504.2 | 8 352.1 | 7 540.4 | 7 540.4 | 847.9 | -811.7 | 0 | 36.2 | |||
滩地 | 1 193.3 | 767.2 | 1 079.1 | 1 091.2 | -426.1 | 311.9 | 12.1 | -102.1 | |||
合计 | 11 223.1 | 11 445.6 | 11 192.2 | 11 204.0 | 222.5 | -253.4 | 11.8 | -19.1 | |||
城乡、工矿、居民用地 | 城镇用地 | 26.9 | 39.0 | 52.0 | 67.6 | 12.1 | 13.0 | 15.6 | 40.7 | ||
农村居民点 | 48.3 | 81.4 | 46.9 | 49.6 | 33.1 | -34.5 | 2.7 | 1.3 | |||
其他建设用地 | 16.0 | 26.7 | 15.7 | 23.3 | 10.7 | -11.0 | 7.6 | 7.3 | |||
合计 | 91.2 | 147.1 | 114.7 | 140.5 | 55.9 | -32.4 | 25.8 | 49.3 | |||
未利用土地 | 沙地 | 966.4 | 239.1 | 948.1 | 948.1 | -727.3 | 709.0 | 0 | -18.3 | ||
盐碱地 | 128.2 | 6.6 | 128.3 | 128.3 | -121.6 | 121.7 | 0 | 0.1 | |||
沼泽地 | 21.2 | 2.0 | 22.0 | 22.0 | -19.2 | 20.0 | 0 | 0.8 | |||
裸土地 | 8.0 | 13.6 | 6.8 | 6.8 | 5.6 | -6.8 | 0 | -1.2 | |||
裸岩石质地 | 43 515.7 | 53 159.6 | 43 544.0 | 43 544.0 | 9 643.9 | -9 615.6 | 0 | 28.3 | |||
其他 | 577.1 | 0 | 580.2 | 580.2 | -577.1 | 580.2 | 0 | 3.1 | |||
合计 | 45 216.6 | 53 420.9 | 45 229.4 | 45 229.4 | 8 204.3 | -8 191.5 | 0 | 12.8 |
表4
不同时段间气候和下垫面变化对径流变化的贡献率"
研究时段 | 参与情景 | 统计量 | 气候因素 | 下垫面因素 | 综合变化 |
---|---|---|---|---|---|
单位时间变化量/(m3∙s-1) | 453.2 | 32.8 | 486.0 | ||
时段1至时段2 | S1、S2、S6 | 变化比例/% | 31.5 | 2.3 | 33.8 |
贡献率/% | 93.3 | 6.7 | / | ||
单位时间变化量/(m3∙s-1) | -252.3 | 148.3 | -104.0 | ||
时段2至时段3 | S2、S3、S7 | 变化比例/% | -13.1 | 7.7 | -5.4 |
贡献率/% | 242.7 | -142.7 | / | ||
单位时间变化量/(m3∙s-1) | 369.3 | -224.6 | 144.7 | ||
时段3至时段4 | S3、S4、S8 | 变化比例/% | 20.3 | -12.3 | 8.0 |
贡献率/% | 255.3 | -155.3 | / | ||
单位时间变化量/(m3∙s-1) | 523.6 | 3.1 | 526.7 | ||
时段1至时段4 | S1、S4、S5 | 变化比例/% | 36.3 | 0.2 | 36.5 |
贡献率/% | 99.4 | 0.6 | / |
1 | Qin Dahe. Climate change science and sustainable development[J]. Advances in Climate Change Research, 2014, 33(7): 874-883. |
秦大河. 气候变化科学与人类可持续发展[J]. 地理科学进展, 2014, 33(7): 874-883. | |
2 | Shen Yongping, Wang Guoya. Key findings and assessment results of IPCC WGI fifth assessment report[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1068-1076. |
沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013, 35(5): 1068-1076. | |
3 | Gao Wende, Wang Yu, Li Zongxing, et al. Analysis on the characteristics of climate change in the endorheic area in alpine region based on extreme precipitation index[J]. Journal of Glaciology and Geocryology, 2021, 43(1): 1-11. |
高文德, 王昱, 李宗省, 等. 高寒内流区极端降水的气候变化特征分析[J]. 冰川冻土, 2021, 43(1): 1-11. | |
4 | Wu Kunpeng, Liu Shiyin, Guo Wanqin. Glacier variation and its response to climate change in the Mount Namjagbarwa from 1980 to 2015[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1115-1125. |
吴坤鹏, 刘时银, 郭万钦. 1980—2015年南迦巴瓦峰地区冰川变化及其对气候变化的响应[J]. 冰川冻土, 2020, 42(4): 1115-1125. | |
5 | Liu Changming. Discussion on some problems of China’s water resources in the 21st century[J]. Water Resources and Hydropower Engineering, 2002, 33(1): 15-19. |
刘昌明. 二十一世纪中国水资源若干问题的讨论[J]. 水利水电技术, 2002, 33(1): 15-19. | |
6 | Wang Rui, Yao Zhijun, Liu Zhaofei, et al. Changes in climate and runoff in the middle course area of the Yarlung Zangbo River basin[J]. Resources Science, 2015, 37(3): 619-628. |
王蕊, 姚治君, 刘兆飞, 等. 雅鲁藏布江中游地区气候要素变化及径流的响应[J]. 资源科学, 2015, 37(3): 619-628. | |
7 | Xu Zongxue, Liu Xiaowan, Liu Liu. Impact of climate change on hydrological cycle in river basins:past, present ane future[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(6): 722-730. |
徐宗学, 刘晓婉, 刘浏. 气候变化影响下的流域水循环:回顾与展望[J]. 北京师范大学学报(自然科学版), 2016, 52(6): 722-730. | |
8 | Yang Zhigang, Zhuo Ma, Lu Hongya, et al. Characteristics of precipitation variation and its effects on runoff in the Yarlung Zangbo River basin during 1961—2010[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 166-172. |
杨志刚, 卓玛, 路红亚, 等. 1961—2010年西藏雅鲁藏布江流域降水量变化特征及其对径流的影响分析[J]. 冰川冻土, 2014, 36(1): 166-172. | |
9 | Gao Jiajia, Du Jun. Extreme precipitation simulation and forecast of the Yarlungzangbo River basin[J]. Journal of Glaciology and Geocryology, 2021, 43(2): 580-588. |
高佳佳, 杜军. 雅鲁藏布江流域极端降水模拟及预估[J]. 冰川冻土, 2021, 43(2): 580-588. | |
10 | Dai Sheng, Bao Guangyu, Qi Guiming, et al. Impacts of extreme climatic events under the context of climate warming on hydrology and water resources in the Qinghai Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1053-1066. |
戴升, 保广裕, 祁贵明, 等. 气候变暖背景下极端气候对青海祁连山水文水资源的影响[J]. 冰川冻土, 2019, 41(5): 1053-1066. | |
11 | IPCC. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change[R]. Synthesis Report, 2014. |
12 | Yao Tandong, Li Zhiguo, Yang Wei, et al. Glacial distribution and mass balance in the Yarlung Zangbo River and its influence on lakes[J]. Chinese Science Bulletin, 2010, 55(20): 2072-2078. |
13 | Liu Zhaofei, Yao Zhijun, Huang Heqing, et al. Land use and climate changes and their impacts on runoff in the yarlung zangbo river basin, China[J]. Land Degradation & Development, 2014, 25(3): 203-215. |
14 | Bai Junrui, Xu Zongxue, Ban Guangchun, et al. Runoff variation and characteristics in Yarlung Zangbo River by Z-index[J]. Journal of Beijing Normal University (Natural Science), 2019, 55(6): 715-723. |
白君瑞, 徐宗学, 班春广, 等. 基于Z指数的雅鲁藏布江流域径流丰枯变化及其特征分析[J]. 北京师范大学学报(自然科学版), 2019, 55(6): 715-723. | |
15 | Li Hao, Niu Qiankun, Wang Xuanxuan, et al. Variation Characteristics of Runoff in the Yarlung Zangbo River basin from 1961 to 2015[J]. Journal of Soil and Water Conservation, 2021, 35(1): 110-115. |
李浩, 牛乾坤, 王宣宣, 等. 1961—2015年雅鲁藏布江流域径流演变规律分析[J]. 水土保持学报, 2021, 35(1): 110-115. | |
16 | Tian Fuqiang, Xu Ran, Yi Nan, et al. Quantification of runoff components in the Yarlung Tsangpo River using a distributed hydrological model[J]. Advances in Water Science, 2020, 31(3): 324-336. |
田富强, 徐冉, 南熠, 等. 基于分布式水文模型的雅鲁藏布江径流水源组成解析[J]. 水科学进展, 2020, 31(3): 324-336. | |
17 | Zhang Jianyun, Liu Jiufu, Jin Junliang, et al. Evolution and trend of water resources in Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1264-1273. |
张建云, 刘九夫, 金君良, 等. 青藏高原水资源演变与趋势分析[J]. 中国科学院院刊, 2019, 34(11): 1264-1273. | |
18 | Chen Qihui, Chen Hua, Zhang Jun, et al.Impacts of climate change and LULC change on runoff in the Jinsha River Basin[J]. Journal of Geographical Sciences, 2020, 30(1): 85-102. |
19 | Gao Chao, Ruan Tian.The influence of climate change and human activities on runoff in the middle reaches of the Huaihe River basin, China[J]. Journal of Geographical Sciences, 2018, 28(1): 79-92. |
20 | Pan Zharong, Ruan Xiaohong, Qian Mingkai, et al.Spatio-temporal variability of streamflow in the Huaihe River basin, China: climate variability or human activities?[J]. Hydrology Research, 2017, 49(1): 177-193. |
21 | Shilong Piao, Ciais P, Huang Yao, et al.The impacts of climate change on water resources and agriculture in China[J]. Nature, 2010, 467: 43-51. |
22 | Guo Junting, Zhang Zhiqiang, Wang Shengping, et al. Appling SWAT model to explore the impact of changes in land use and climate on the streamflow in a Watershed of Northern China[J]. Acta Ecologica Sinica, 2014, 34(6): 1559-1567. |
郭军庭, 张志强, 王盛萍, 等. 应用SWAT模型研究潮河流域土地利用和气候变化对径流的影响[J]. 生态学报, 2014, 34(6): 1559-1567. | |
23 | Lu Jianzhong, Cui Xiaolin, Chen Xiaoling, et al. Evaluation of hydrological response to extreme climate variability using SWAT model: application to the Fuhe basin of Poyang Lake watershed, China[J]. Hydrology Research, 2016, 48(6): 1730-1744. |
24 | Yuan Yuzhi, Zhang Zhengdong, Meng Jinhua. Impact of changes in land use and climate on the runoff in Liuxihe Watershed based on SWAT model[J]. Chinese Journal of Applied Ecology, 2015, 26(4): 989-998. |
25 | Wang Xin, Qin Guanghua, Li Hongxia. Analysis on characteristics and variation trend of annual runoff of mainstream of Yarlung Tsangpo River[J]. Yangtze River, 2016, 47(1): 23-26. |
王欣, 覃光华, 李红霞. 雅鲁藏布江干流年径流变化趋势及特性分析[J]. 人民长江, 2016, 47(1): 23-26. | |
26 | Zhao Zhichao, Fu Qiang, Gao Chao, et al. Simulation of monthly runoff considering flow components in Yarlung Zangbo River[J]. Journal of China Hydrology, 2017, 37(2): 26-30. |
赵智超, 富强, 高超, 等. 考虑径流成分的雅鲁藏布江月径流模拟[J]. 水文, 2017, 37(2): 26-30. | |
27 | Tang Xiongpeng, Liu Yanli, Zhang Jianyun, et al. Runoff Simulation and Prediction under Climate Change above Lazi Station in Upstream of Yarlung Zangbo River[J]. Journal of China Hydrology, 2018, 38(6): 24-30. |
唐雄朋, 刘艳丽, 张建云, 等. 气候变化下雅鲁藏布江拉孜以上流域径流过程模拟与预测[J]. 水文, 2018, 38(6): 24-30. | |
28 | Jiang Ke. Runoff composition of the Yarlung Zangbo River and its response to climate change[D]. Harbin: Harbin Institute of Technology, 2020. |
江科. 雅鲁藏布江流域径流组成及其对气候变化的响应[D]. 哈尔滨: 哈尔滨工业大学, 2020. | |
29 | Wang Rui. Impacts of climate change and underlying surface variation on runoff in the middle reaches of the Yarlung Zangbo River basin[D]. Beijing: The University of Chinese Academy of Sciences, 2015. |
王蕊. 雅鲁藏布江流域中游气候与下垫面变化对径流的影响[D]. 北京: 中国科学院大学, 2015. | |
30 | Liu Jiangtao, Xu Zongxue, Zhao Huan, et al. Accuracy assessment for two satellite precipitation products: case studies in the Yarlung Zangbo River basin[J]. Plateau Meteorology, 2019, 38(2): 386-396. |
刘江涛, 徐宗学, 赵焕, 等. 不同降水卫星数据反演降水量精度评价——以雅鲁藏布江流域为例[J]. 高原气象, 2019, 38(2): 386-396. | |
31 | Liu Jinping, Zhang Wanchang, Nie Ning. Spatial downscaling of TRMM precipitation data using an optimal subset regression model with NDVI and terrain factors in the Yarlung Zangbo River basin, China[J]. Advances in Meteorology, 2018, 2018: 3491960. |
32 | Yang Hao, Cui Chunguang, Wang Xiaofang, et al. Research progresses of precipitation variation over the Yarlung Zangbo River basin under global climate warming[J]. Torrential Rain and Disasters, 2019, 38(6): 565-575. |
杨浩, 崔春光, 王晓芳, 等. 气候变暖背景下雅鲁藏布江流域降水变化研究进展[J]. 暴雨灾害, 2019, 38(6): 565-575. | |
33 | Xu Pengkun, Zhang Wanchang. Inversion of terrestrial water storage changes in recent years for Qinghai-Tibetan Plateau and Yarlung Zangbo River basin by GRACE[J]. Journal of Water Resources and Water Engineering, 2013, 24(1): 23-29. |
许朋琨, 张万昌. GRACE反演近年青藏高原及雅鲁藏布江流域陆地水储量变化[J]. 水资源与水工程学报, 2013, 24(1): 23-29. | |
34 | Immerzeel W W, Droogers P, De Jong S M, et al. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing[J]. Remote Sensing of Environment, 2009, 113(1): 40-49. |
35 | Xu Jingwen, Zhang Wanchang, Zheng Ziyan, et al. Establishment of a hybrid rainfall-runoff model for use in the Noah LSM[J]. Acta Meteorologica Sinica, 2012, 26(1): 85-92. |
36 | Zhao Qiudong, Ding Yongjian, Wang Jian, et al. Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow[J]. Journal of Hydrology, 2019, 573: 60-81. |
37 | Zhang Dong. Study of distributed hydrological model with the dynamic integration of infiltration excess and saturated excess water Yielding Mechanism[D]. Nanjing: Nanjing University, 2006. |
张东. 基于渗蓄一体化动态产流机制的分布式水文模型研究[D]. 南京: 南京大学, 2006. | |
38 | Sun He, Su Fengge. Precipitation correction and reconstruction for streamflow simulation based on 262 rain gauges in the upper Brahmaputra of southern Tibetan Plateau[J]. Journal of Hydrology, 2020, 590: 125484. |
39 | Liu Jinping, Zhang Wanchang, Deng Cai, et al. Spatiotemporal variations of snow cover over Yarlung Zangbo River basin in Tibet from 2000 to 2014 and its response to key climate factors[J]. Journal of Glaciology and Geocryology, 2018, 40(4): 643-654. |
刘金平, 张万昌, 邓财, 等. 2000-2014年西藏雅鲁藏布江流域积雪时空变化分析及对气候的响应研究[J]. 冰川冻土, 2018, 40(4): 643-654. | |
40 | Deng Haijun, Pepin N C, Chen Yaning. Changes of snowfall under warming in the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(14): 7323-7341. |
41 | Zhou Xiaoyu, Zhao Chunyu, Li Na, et al. Influence of snow and temperature on the depth of frozen soil in winter half year in Northeast China[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 1027-1039. |
周晓宇, 赵春雨, 李娜, 等. 东北地区冬半年积雪与气温对冻土的影响[J]. 冰川冻土, 2021, 43(4): 1027-1039. | |
42 | Wang Kang, Zhang Tingjun, Mu Cuicui, et al. From the Third Pole to the Arctic: changes and impacts of the climate and cryosphere[J] Journal of Glaciology and Geocryology, 2020, 42(1): 104-123. |
王康, 张廷军, 牟翠翠, 等. 从第三极到北极:气候与冰冻圈变化及其影响[J]. 冰川冻土, 2020, 42(1): 104-123. | |
43 | Wang Wen, Wang Xiaoju, Wang Peng. Assessing the applicability of GLDAS monthly precipitation data in China[J]. Advances in Water Science, 2014, 25(6): 769-778. |
王文, 汪小菊, 王鹏. GLDAS月降水数据在中国区的适用性评估[J]. 水科学进展, 2014, 25(6): 769-778. | |
44 | Liu Yonghe, Yang Zongliang, Lin Peirong, et al. Comparison and evaluation of multiple land surface products for the water budget in the Yellow River Basin[J]. Journal of Hydrology, 2020, 584: 124534. |
45 | Koster R D, Suarez M J, Ducharne A, et al.A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D20): 24809-24822. |
46 | Zhou Yi, Qin Zhihao, Bao Gang. Land surface temperature estimation under cloud cover with GIDS[J]. National Remote Sensing Bulletin, 2012, 16(3): 492-504. |
周义, 覃志豪, 包刚. GIDS空间插值法估算云下地表温度[J]. 遥感学报, 2012, 16(3): 492-504. | |
47 | Li Kuangyu, Zhou Mei, Chen Jiuying, et al. An approach of improved gradient plus inverse distance squared for spatial[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(4): 491-497. |
李框宇, 周梅, 陈玖英, 等. 一种适用于气温空间插值的改进梯度距离平方反比法[J]. 中国科学院大学学报, 2019, 36(4): 491-497. | |
48 | Liu Jiyuan, Kuang Wenhui, Zhang Zengxiang, et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s[J]. Journal of Geographical Sciences, 2014, 24(2): 195-210. |
49 | Klok E J, Jasper K, Roelofsma K P, et al. Distributed hydrological modelling of a heavily glaciated Alpine river basin[J]. Hydrological Sciences Journal, 2001, 46(4): 553-570. |
50 | Schaefli B, Hingray B, Niggli M, et al. A conceptual glacio-hydrological model for high mountainous catchments[J]. Hydrology and Earth System Sciences, 2005, 9(1/2): 95-109. |
51 | Liu Jinping, Zhang Wanchang. Spatial variability in degree-day factors in Yarlung Zangbo River basin in China[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(5): 704-711. |
[1] | 陈龙飞, 张万昌, 高会然. 三江源地区1980—2019年积雪时空动态特征及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 133-146. |
[2] | 李艳, 金会军, 温智, 赵子龙, 金晓颖. 多年冻土区斜坡稳定性研究综述[J]. 冰川冻土, 2022, 44(1): 203-216. |
[3] | 达伟, 王书峰, 沈永平, 陈安安, 毛炜峄, 张伟. 1957—2019年昆仑山北麓车尔臣河流域水文情势及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 46-55. |
[4] | 高文德,王昱,李宗省,王文胜,杨盛梅. 高寒内流区极端降水的气候变化特征分析[J]. 冰川冻土, 2021, 43(6): 1693-1703. |
[5] | 苏辉东,贾仰文,刘欢,李耀军,杜军凯,牛存稳,甘永德,曾庆慧. 基于WEP-L模型的寒区流域径流演变模拟及归因分析[J]. 冰川冻土, 2021, 43(5): 1523-1530. |
[6] | 唐志光,邓刚,胡国杰,王欣,蒋宗立,桑国庆. 亚洲高山区积雪物候时空动态及其对气候变化的响应[J]. 冰川冻土, 2021, 43(5): 1400-1411. |
[7] | 姚俊强,陈静,迪丽努尔·托列吾别克null,韩雪云,毛炜峄. 新疆气候水文变化趋势及面临问题思考[J]. 冰川冻土, 2021, 43(5): 1498-1511. |
[8] | 贺青山,杨建平,陈虹举,王彦霞,唐凡,冀钦,葛秋伶. 中国西部寒区流域冰川水文调节功能研究[J]. 冰川冻土, 2021, 43(5): 1512-1522. |
[9] | 罗谨,王军邦,杨永胜,张光茹,祝景彬,贺慧丹,李英年. 1991—2015年三江源河曲高寒草甸干湿状况及牧草产量变化的气候归因研究[J]. 冰川冻土, 2021, 43(5): 1542-1550. |
[10] | 张齐民,闫世勇,吕明阳,张露,刘广. 高分三号山地冰川表面运动提取与分析[J]. 冰川冻土, 2021, 43(5): 1594-1605. |
[11] | 何天豪, 高红凯, 李向应, 韩添丁, 贺志华, 张志才, 段峥, 刘敏, 丁永建. 水稳定同位素示踪的冰川流域水文模拟及不确定性研究[J]. 冰川冻土, 2021, 43(4): 1130-1143. |
[12] | 黄克威, 王根绪, 宋春林, 俞祁浩. 基于LSTM的青藏高原冻土区典型小流域径流模拟及预测[J]. 冰川冻土, 2021, 43(4): 1144-1156. |
[13] | 韩婷, 雷向杰, 李亚丽, 王毅勇. 秦岭区域性高山积雪事件变化特征分析[J]. 冰川冻土, 2021, 43(4): 1040-1048. |
[14] | 游庆龙,康世昌,李剑东,陈德亮,翟盘茂,吉振明. 青藏高原气候变化若干前沿科学问题[J]. 冰川冻土, 2021, 43(3): 885-901. |
[15] | 高佳佳,杜军. 雅鲁藏布江流域极端降水模拟及预估[J]. 冰川冻土, 2021, 43(2): 580-588. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000