冰川冻土 ›› 2022, Vol. 44 ›› Issue (1): 327-339.doi: 10.7522/j.issn.1000-0240.2022.0040
刘文惠1(), 谢昌卫2(
), 刘海瑞3, 庞强强2, 王武2, 刘广岳2, 杨雨昆1, 王铭1, 张琪1
收稿日期:
2020-12-11
修回日期:
2021-03-27
出版日期:
2022-02-28
发布日期:
2022-03-28
通讯作者:
谢昌卫
E-mail:liuwenhui222@126.com;xiecw@lzb.ac.cn
作者简介:
刘文惠,讲师,主要从事多年冻土与气候变化研究. E-mail: liuwenhui222@126.com
基金资助:
Wenhui LIU1(), Changwei XIE2(
), Hairui LIU3, Qiangqiang PANG2, Wu WANG2, Guangyue LIU2, Yukun YANG1, Ming WANG1, Qi ZHANG1
Received:
2020-12-11
Revised:
2021-03-27
Online:
2022-02-28
Published:
2022-03-28
Contact:
Changwei XIE
E-mail:liuwenhui222@126.com;xiecw@lzb.ac.cn
摘要:
多年冻土与大气间的相互作用主要是通过活动层中的水热动态变化过程而实现。气候变化背景下的多年冻土活动层冻融过程模拟、多年冻土厚度制图和变化预测是研究冻土区生态环境、水文、工程以及碳循环的基础。根据国内外研究进展,总结了不同修正形式的Stefan方程在多年冻土活动层冻融过程和活动层厚度模拟中的应用进展,对将Stefan方程应用到分层堆积土壤中的不同算法进行了简要介绍,并指出了其在应用过程中存在的问题。Stefan方程首次将地表(或者大气)温度的变化与冰层(或者土层)的冻结融化过程以简单公式的形式联系起来,极大地简化了土壤冻结融化过程的分析计算。由于其输入参数少、形式简单、模拟效果可靠,成为常用模拟土壤冻融过程的方法之一,将其耦合到气候模型、陆面模型和水文模型中的研究也越来越多。Stefan方程最初在研究北极地区湖冰形成过程时提出,在应用到冻土学中后,不同学者在考虑土壤含水量、不同下垫面地气温差、地形和降水等因素后对方程进行了改进,并有多种算法试图将这一方程应用到非均质土壤中,取得了较好的模拟效果。但是,Stefan方程在国内的应用更多地用于简单模拟均质土壤多年冻土活动层厚度的空间分布状况,其应用到非均质土壤中的研究却较少。因此,未来需更深入研究Stefan方程模拟分层土壤的冻融过程,为准确掌握多年冻土对气候变化的响应研究提供最基本的方法。
中图分类号:
刘文惠, 谢昌卫, 刘海瑞, 庞强强, 王武, 刘广岳, 杨雨昆, 王铭, 张琪. Stefan方程在土壤冻融过程模拟中的应用[J]. 冰川冻土, 2022, 44(1): 327-339.
Wenhui LIU, Changwei XIE, Hairui LIU, Qiangqiang PANG, Wu WANG, Guangyue LIU, Yukun YANG, Ming WANG, Qi ZHANG. Application of Stefan equation on simulating freezing-thawing process of permafrost[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 327-339.
表1
融化N因子(Nt )和冻结N因子(Nf )值统计结果"
地点 | 地表条件 | Nt | Nf | 文献来源 |
---|---|---|---|---|
青海热水地区 | 草炭亚黏土 | 1.61 | 0.84 | 李述训等[ |
天然草地 | 1.85 | 0.81 | ||
碎石亚黏土 | 1.99 | 0.82 | ||
砂砾石 | 2.26 | 0.79 | ||
北麓河地区 | 高寒草原 | 2.06 | 0.58 | 蒋观利等[ |
高寒沼泽草甸 | 1.47 | 0.55 | ||
高寒草甸 | 1.27 | 0.54 | ||
青藏铁路沿线的气象站 | 格尔木 | 1.41 | 1.11 | 赵红岩等[ |
五道梁 | 2.75 | 0.73 | ||
沱沱河 | 2.24 | 0.78 | ||
安多 | 2.15 | 0.76 | ||
那区 | 1.94 | 0.73 | ||
当雄 | 1.81 | 0.65 | ||
木里、热水地区 | 天然草皮 | 1.89 | 0.79 | 吴青柏[ |
3 m高路堤 | 1.98 | 0.81 | ||
砂砾表面 | 2.26 | 0.77 | ||
3 m高路堤表面草皮 | 1.80 | 0.91 | ||
碎石亚黏土 | 2.00 | 0.85 | ||
草炭亚黏土 | 1.60 | 0.83 | ||
裸露地表 | 2.55 | 0.74 | ||
植被 | 2.30 | 0.68 | ||
阿拉斯加 | 泥炭层上面是云杉、苔藓 | 0.37 | 0.29 | Carlson[ |
泥炭层上面只有苔藓 | 0.73 | 0.25 | ||
只有泥炭层 | 1.22 | 0.33 | ||
阿拉斯加库帕河流域的热通量观测点 | 荒地 | 1.25 | — | Klene等[ |
灌木 | 0.97 | — | ||
水道 | 0.73 | 0.32 | ||
草丛沼泽 | 0.90 | 0.30 | ||
北极和亚北极地区 | 积雪 | — | 1.00 | District[ |
草皮、泥碳 | 1.00 | 0.50 | ||
沼泽 | 0.90 | 0.30 | ||
加拿大Takhhini河谷 | 火烧遗迹 | 0.55 | 0.22 | Burn[ |
森林 | 0.50 | 0.35 | ||
加拿大Mackenzie河谷 | 冲积阶地上是有机质和淤泥 | 0.64 | 0.30 | Taylor[ |
沼泽 | 0.26 | 0.29 |
表2
基于Stefan方程的活动层厚度估算值小于实测值的结果统计"
站点 | 纬度/N | 经度/E | 海拔/m | 实测值/m | 模拟值/m | 相对误差/% | 文献来源 | |
---|---|---|---|---|---|---|---|---|
蒙古北部的库苏古尔 | BH3 | — | — | — | 3.2 | 3.0 | 6.2 | |
BH4 | 4.0 | 2.9 | 27.5 | |||||
BH6 | >4.0 | 3.6 | >10 | |||||
BH9 | 4.8 | 4.1 | 14.5 | |||||
BH10 | 4.2 | 3.6 | 14.2 | |||||
BH16 | 4.8 | 1.3 | 72.9 | |||||
乌丽 | 34.00° | 92.67° | 4 625 | 2.55 | 2.18 | 14.5 | 庞强强等 | |
北麓河 | 34.82° | 92.92° | 4 656 | 2.40 | 2.16 | 10 | ||
开心岭 | 33.96° | 92.34° | 4 652 | >2.70 | 2.19 | >18.9 | ||
通天河 | 33.77° | 92.24° | 4 650 | 2.65 | 2.22 | 16.2 | ||
温泉盆地 | — | 91.94° | 4 817 | 3.36 | 3.33 | 0.8 | 徐晓明等 | |
扎加藏布河 | — | 91.53° | 4 868 | 3.50 | 2.65 | 24.2 | ||
扎加藏布河 | — | 91.62° | 4 887 | 3.42 | 2.73 | 20.1 |
1 | Qin Dahe. Glossary of Cryosphere Science[M]. Beijing: China Meteorological Press, 2014: 68-69. |
秦大河. 冰冻圈科学词典[M]. 北京: 气象出版社, 2014: 68-69. | |
2 | Liu Guangyue, Zhao Lin, Xie Changwei, et al. Variation characteristics and impact factors of the depth of zero annual amplitude of ground temperature in permafrost regions on the Tibetan Plateau [J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1189-1200. |
刘广岳, 赵林, 谢昌卫, 等. 青藏高原多年冻土区地温年变化深度的变化规律及影响因素[J]. 冰川冻土, 2016, 38(5): 1189-1200. | |
3 | Zou D F, Zhao L, Sheng Y P, et al. A new map of the permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11: 2527-2542. |
4 | Qin Y H, Wu T H, Zhao L, et al. Numerical modeling of the active layer thickness and permafrost thermal state across Qinghai-Tibetan Plateau [J]. Journal of Geophysical Research: Atmosphere, 2017, 122: 11604-11620. |
5 | Peng X Q, Zhang T J, Frauenfeld O W, et al. Spatiotemporal Changes in Active Layer Thickness under Contemporary and Projected Climate in the Northern Hemisphere[J]. Journal of Climate, 2018, 31(1): 251-266. |
6 | Cheng Guodong, Zhao Lin, Li Ren, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2783-2795. |
程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27): 2783-2795. | |
7 | Sun Z, Zhao L, Hu G J, et al. Modeling permafrost changes on the Qinghai-Tibetan Plateau from 1966 to 2100: a case study from two boreholes along the Qinghai-Tibet engineering corridor[J]. Permafrost and Periglacial Processes, 2020, 31: 156-171. |
8 | Zhao L, Zou D F, Hu G J, et al. Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) Plateau[J]. Permafrost and Periglacial Processes, 2020, 1-10. |
9 | Wang Kang, Zhang Tingjun, Mu Cuicui, et al. From the third pole to the Arctic:changes and impacts of the climate and cryosphere[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 104-123. |
王康, 张廷军, 牟翠翠, 等. 从第三极到北极: 气候与冰冻圈变化及其影响[J]. 冰川冻土, 2020, 42(1): 104-123. | |
10 | Riseborough D, Shiklomanov N, Etzelmuller B, et al. Recent advances in permafrost modelling[J]. Permafrost and Periglacial Processes, 2008, 19: 137-156. |
11 | Wang Chenghai, Jin Shaunglong, Wu Zhongyuan, et al. Evaluation and application of the estimation method of frozen(thawing) depth over China[J]. Advances In Earth Science, 2009, 24(2): 132-140. |
王澄海, 靳双龙, 吴忠元, 等. 估算冻结(融化)深度方法的比较及在中国地区的修正和应用[J]. 地球科学进展, 2009, 24(2): 132-140. | |
12 | Stefan J. Uber die Theorie der Eisbilfung, insbesondere uber die Eisbildung im Polarmeere[J]. Annal. Phy. Chem., 1891, 42: 269-286. |
13 | Berggren W P. Prediction of temperature distribution in frozen soil [J]. Trans. Am.Geophys. 1943, 3: 71-77. |
14 | USSRAcademy of Sciences. BranchSiberian. Permafrost Institute. General geocryology[M]. Guo Dongxin, Liu Tieliang, Zhang Weixin, et al. trans. Beijing: Science Press, 1988. |
苏联科学院西伯利亚分院冻土研究所. 普通冻土学[M]. 郭东信, 刘铁良, 张维信, 等译. 北京: 科学出版社, 1988. | |
15 | Holden J T, Jone R H, Dudek J M. Heat and mass flow association with a freezing front[J]. Engineering Geology, 1981, 18: 153-164. |
16 | Hong Tao, Liang Sihai, Sun yu, et al. Impact analysis of permafrost thermal conductivity and its application of simulating active layer thickness in the source area of the Yellow River[J]. Journal of Glaciology and Geocryology, 2013, 35(4): 824-833. |
洪涛, 梁四海, 孙禹, 等.黄河源区多年冻土热传导系数影响因素分析及其在活动层厚度模拟中的应用[J]. 冰川冻土, 2013, 35(4): 824-833. | |
17 | Heggem E S F, Etzelmuller B, Anarmaa S, et al. Spatial Distribution of Ground Surface Temperatures and Active Layer Depths in the Hovsgol Area, Northern Mongolia[J]. Permafrost and Periglacial Processes, 2006, 17: 357-369. |
18 | Romanovsky V E, Osterkamp T E. Thawing of the active layer on the coastal plain of the Alaskan Arctic[J]. Permafrost and Periglacial Processes, 1997, 8(1): 1-22. |
19 | Liu Tieliang. Overview of formula of simulating thawing or freezing depth for foreign[J]. Journal of Glaciology and Geocryology, 1983, 5(2):85-94. |
刘铁良. 国外计算冻结或融化深度公式概述[J]. 冰川冻土, 1983, 5(2): 85-94. | |
20 | Carson H. Calculation of depth of thaw in frozen ground[J]. Highway Research Board Special Report, 1952, 2: 19-223. |
21 | Li Shuxun, Wu Tonghua. The relationship between air temperature and ground temperature in the Tibetan Plateau [J]. Journal of Glaciology and Geocryology, 2005, 27(5): 627-631. |
李述训, 吴通华. 青藏高原地气温度之间的关系[J]. 冰川冻土, 2005, 27(5): 627-631. | |
22 | Jiang Guanli, Wu Qingbai, Zhang Zhongqiong. Study on the differences of thermal-moisture dynamics in the active layer of permafrost in different alpine ecosysyems on the Tibetan Plateau [J]. Journal of Glaciology and Geocryology, 2018, 40(1): 7-17. |
蒋观利, 吴青柏, 张中琼. 青藏高原不同高寒生态系统类型下多年冻土活动层水热过程差异研究[J]. 冰川冻土, 2018, 40(1): 7-17. | |
23 | Zhao Hongyan, Jiang Hao, Wang Keli, et al. The surface thawing-freezing indexes along the Qinghai-Tibet Railway: analysis and calculation[J]. Journal of Glaciology and Geocryology, 2008, 30(4): 617-623. |
赵红岩, 江灏, 王可丽, 等. 青藏铁路沿线地表融冻指数的计算分析[J]. 冰川冻土, 2008, 30(4): 617-623. | |
24 | Wu Qingbai. Study on change of frozen soil environment and engineering suitability under human activities[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2000: 129-131. |
吴青柏. 人为活动下冻土环境变化和工程适应性研究[D]. 北京: 中国科学院研究生院, 2000: 129-131. | |
25 | Klene A E, Nelson F E, Shiklomanov N I, et al. Interannual variability of winter n-factors in the Kuparuk River Basin, Alaska[C]//Ninth International Conference on Permafrost. 2008: 953-958. |
26 | Klene A E, Nelson F E, Shiklomanov N I, et al. The n-factor in natural landscape: Variability of air and soil-surface temperature, Kuparuk River Basin, Alaska, U. S. A[J]. Arctic Antarctic and Alpine Research, 2001, 3(2): 140-148. |
27 | Klene A E. The n-factor in natural landscape: relations between air and surface temperatures in the Kuparuk River Basin, northern Alaska[J]. Publications in Climatology, 2000, 53: 1-85. |
28 | District T. Comprehensive report: investigation of military construction in Arctic and Subarctic regions, 1945-1948: Appendix iii, de[R]. Technical Report-Arctic Construction and Frost, 1950. |
29 | Burn C R. The response (1958-1997) of permafrost and near-surface ground temperatures to forest fire, Takhini River valley, southern Yukon Territory[J]. Revue Canadienne Des Sciences De La Terre, 1998, 35(2): 184-199. |
30 | Taylor A E. Field measurements of n-factors for natural forest areas, Mackenzie Valley, Northwest Territories[J]. Interior Plains and Arctic Canada, 1995: 89-98. |
31 | Lunardini V J. Theory of N-factors and correlation of data[C]//Proceedings of the Third International Conference on Permafrost, National Council of Canada: Ottawa; 1978, 1: 40-46. |
32 | Shur Y L, Slavin Borovskiy V B. N-factor maps of Russian permafrost region[C]//Proceedings of the Sixth International Conference on Permafrost. Wushan, Guangzhou, China: South China University of Technology Press, 1993, 2: 564-568. |
33 | Juliussen H, Humlum O. Towards a TTOP ground temperature model for mountainous terrain in central-eastern Norway[J]. Permafrost and Periglacial Processes, 2007, 18: 161-184. |
34 | Pang Qiangqiang, Li Shuxun, Wu Tonghua, et al. Simulated distribution of the active layer thickness on the Qinghai Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2006, 28(3): 390-395. |
庞强强, 李述训, 吴通华, 等. 青藏高原冻土区活动层厚度分布模拟[J]. 冰川冻土, 2006, 28(3): 390-395. | |
35 | Xu Xiaoming, Wu Qingbai, Zhang Zhongqiong. Responses of active layer thickness on the Qinghai-Tibet Plateau to climate change[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 1-8. |
徐晓明, 吴青柏, 张中琼. 青藏高原多年冻土活动层厚度对气候变化的响应[J]. 冰川冻土, 2017, 39(1): 1-8. | |
36 | Zhang Zhongqiong, Wu Qingbai. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as climate warming[J]. 2012, 34(3): 505-511. |
张中琼, 吴青柏. 气候变化情景下青藏高原多年冻土活动层厚度变化预测[J]. 冰川冻土, 2012, 34(3): 505-511. | |
37 | Klene A E, Nelson F E, Shiklomanov N I. The n–factor as a tool in geocryological mapping: seasonal thaw in the Kuparuk River Basin, Alaska[J]. Physical Geography, 2001, 22(6): 449-466. |
38 | Zhang T, Frauenfeld O W, Serreze M C, et al. Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin[J]. Journal of Geophysical Research Atmospheres, 2005, 110: 1-14. |
39 | Harlan R L, Nixon J F. Ground thermal regime [J]. Geotechnical Engineering for Cold Regions, 1978, 103-163. |
40 | Hinkel K M, Nicholas J R J. Active layer thaw rate at a Boreal forest site in Central Alaska, U.S.A[J]. Arctic and Alpine Research, 1995, 27(1): 72-80. |
41 | Peng X Q, Zhang T J, Cao B, et al. Changes in freezing-thawing index and soil freeze depth over the Heihe River Basin, Western China[J]. Arctic Antarctic and Alpine Research, 2016, 48(1): 161-176. |
42 | Shiklomanov N I, Nelson F E. Active-layer mapping at regional scales: a 13-years spatial time series for the Kuparuk region, north-central Alaska[J]. Permafrost and Periglacial Processes, 2002, 13(3): 219-230. |
43 | Shiklomanov N I, Nelson F E. Statistical representation of landscape-specific active-layer variability[C]// Phillips M, Springman S M, Arenson L U. Proceedings of the Eighth International Conference on Permafrost, Zurich, Switzerland. Lisse: A.A. Balkema, 2003: 1039-1044. |
44 | Brown J, Hinkel K M, Nelson F E. The Circumpolar Active Layer Monitoring (CALM) program: research designs and initial results[J]. Polar Geography, 2000, 24(3): 166-258. |
45 | Hinkel K M, Nelson F E. Spatial and temporal patterns of active layer thickness at Circumpolar Active Layer Monitoring (CALM) sites in northern Alaska, 1995-2000[J]. Journal of Geophysical Research Atmosphere, 2003, 108(D): 8168. |
46 | Nelson F E, Shiklomanov N I, Mueller G R, et al. Estimating active layer thickness over a large region: Kuparuk River Basin, Alaska, USA[J]. Arctic and Alpine Research, 1997, 29(4): 367-378. |
47 | Jumikis A R. Thermal geotechnics[M]. New Brunswick: Rutgers University Press, 1997: 200-204. |
48 | Lunardini V J. Heat transfer in cold climates[M]. New York: Van Nostrand Reinhold Company, 1981. |
49 | Kersten M S. Frost penetration: relationship to air temperature and other factors[J]. Highway Research Board Bull, 1959, 225: 45-80. |
50 | Nixon J F, McRoberts E C. A study of some factors affecting the thawing of frozen soils[J]. Canadian Geotechnical Journal, 1973, 10: 439-452. |
51 | Xu Xiaozu, Wang Jiacheng, Zhang Lixin. Physics of frozen soil[M]. 2nd ed. Beijing: Science Press, 2010: 75-82. |
徐敩祖, 王家澄, 张立新. 冻土物理学[M]. 2版. 北京: 科学出版社, 2010: 75-82. | |
52 | Xie C W, William A G. A simple thaw-freeze algorithm for a multi-layered soil using the stefan equation[J]. Permafrost and Periglacial Processes, 2013, 24: 252-260. |
53 | Woo M K, Mollinga M, Sharon S L. Climate warming and active layer thaw in the boreal and tundra environments of the Mackenzie Valley[J]. Canadian Journal of Earth Sciences, 2007, 44(6): 733-743. |
54 | Woo M K, Mollinga M, Smith S L. Modeling maximum active layer thaw in boreal and Tundra environments using limited data[M]//Cold Region Atmospheric and Hydrologic Studies. The Mackenzie GEWEX Experience. Springer Berlin Heidelberg, 2008. |
55 | Woo M K, Mollinga M, Smith S L. Simulating active layer thaw in a boreal environment[J]. Geographie Physique Et Quaternaire, 2006, 60(1): 9. |
56 | Woo M K, Arain M A, Mollinga M, et al. A two-directional freeze and thaw algorithm for hydrologic and land surface modeling[J]. Geophysical Research Letters, 2004, 31(12): 261-268. |
57 | Liu Wenhui, Xie Changwei, Zhao Lin, et al. Simulating the active layer depth and analyzing its influence factors in permafrost of the Mahan Mountain, Lanzhou[J]. Journal of Glaciology and Geocryology, 2015, 37(6): 1443-1452. |
刘文惠, 谢昌卫, 赵林, 等. 兰州马衔山多年冻土活动层厚度估算及影响因素分析[J]. 冰川冻土, 2015, 37(6): 1443-1452. | |
58 | Kurylyk B L. Discussion of ‘A simple thaw‐freeze algorithm for a multi‐layered soil using the Stefan equation’ by Xie and Gough (2013)[J]. Permafrost and Periglacial Processes, 2015, 26(2): 200-206. |
59 | Xie C W, Gough W A. Comments on thaw-freeze algorithms for multilayered soil using the Stefan equation[J]. Sciences in Cold and Arid Regions, 2017, 9(6): 525-533. |
60 | Cherkauer K A, Lettenmaier D P. Simulation of spatial variability in snow and frozen soil[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D22): 1-10. |
61 | Luo L F, Robock A, Vinnikov KY, et al. Effects of frozen soil on soil temperature, spring infiltration, andrunoff: results from the PILPS 2(d) experiment at Valdai, Russia [J]. Journal of Hydrometeorology, 2003, 4 (2): 334-351. |
62 | Liao C, Zhuang Q L. Quantifying the role of permafrost distribution in groundwater and surface water interactions using a three-dimensional hydrological model[J]. Arctic Antarctic and Alpine Research, 2017, 49: 81-100. |
63 | Zhang X, Sun S F, Xue Y K. Development and testing of a frozen soil parameterization for cold region studies[J]. Journal of Hydrometeorology, 2007, 8: 690-701. |
64 | Pomeroy J W, Gray D M, Brown T, et al. The cold regions hydrological model: a platform for basing process representation and model structure on physical evidence[J]. Hydrological Processes, 2007, 21(19): 2650- 2667. |
65 | Zhang Wei. Simulating alpine soil thermal regime and cold regions hydrological processes using modular modeling method[D]. Lanzhou: Lanzhou University, 2013. |
张伟. 基于模块化建模方法的高寒土壤热状况及水文过程模拟[D]. 兰州: 兰州大学, 2013. | |
66 | Zhou J, Pomeroy J W, Zhang W, et al. Simulating cold regions hydrological processes using a modular model in the west of China[J]. Journal of Hydrology, 2014, 509: 13-24. |
67 | Han Li, Song Kechao, Zhang Wenjiang, et al. Temporal and spatial variations of hydrological factors in the source area of the Yangtze River and its responses to climate change[J]. Journal of Mountain Science, 2017(2): 129-141. |
韩丽, 宋克超, 张文江, 等. 长江源头流域水文要素时空变化及对气候因子的响应[J]. 山地学报, 2017(2) : 129-141. | |
68 | Stendel M, Christensen J H. Impact of global warming on permafrost conditions in a coupled GCM[J]. Geophysical Research Letters, 2002, 29(13): 1632-1641. |
69 | Li X, Koike T. Frozen soil parameterization in SiB2 and its validation with GAME-Tibet observations[J]. Cold Regions Science and Technology, 2003, 36: 165-182. |
70 | Yi S H, Arain M A, Woo M K. Modifications of a land surface scheme for improved simulation of ground freeze-thaw in northern environments[J]. Geophysical Research Letters, 2006, 33: 1-5. |
71 | Fox J D. Incorporating freeze-thaw calculations into a water balance model[J]. Water Resources Research, 1992, 28 (9): 2229-2244. |
72 | Cao Bin, Zhang Tingjun, Peng Xiaoqing, et al. Spatial variability of freezing-thawing index over the Heihe River Basin[J]. Advances in Earth Science, 2015, 30(3): 357-366. |
曹斌, 张廷军, 彭小清, 等. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3) : 357-366. | |
73 | Liu Lei, Luo Dongliang. Spatial and temporal characteristics of air/ground freezing and thawing index in the middle and lower reaches of the Yarlung Zangbo River during 1977-2017[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 812-822. |
刘磊, 罗栋梁. 1977-2017年雅江流域中下游大气/地面冻融指数时空变化特征[J]. 冰川冻土, 2020, 42(3): 812-822. | |
74 | Du Yizhen, Li Ren, Wu Tonghua, et al. Study of soil thermal conductivity: research status and advances[J]. Journal of Glaciology and Geocryology, 2015, 37(4): 1067-1074. |
杜宜臻, 李韧, 吴通华, 等. 土壤热导率的研究现状及其进展[J]. 冰川冻土, 2015, 37(4): 1067-1074. | |
75 | He Ruixia, Jin Huijun, Zhao Shuping, et al. Review of status and progress of the study in thermal conductivity of frozen soil[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 116-126. |
何瑞霞, 金会军, 赵淑萍, 等. 冻土导热系数研究现状及进展[J]. 冰川冻土, 2018, 40(1): 116-126. | |
76 | Subin Z M, Kven C D, Riley W J, et al. Effects of soil moisture on the responses of soil temperatures to climate change in cold regions[J]. Journal of Climate, 2013, 26(10): 3139-3158. |
77 | Li Xiaoying, Yao Zhengyi, Xiao Jianhua, et al. Analysis of the spatial-temporal variations characteristics of precipitation over Tibetan Plateau from 1961 through 2010[J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1233-1240. |
李晓英, 姚正毅, 肖建华, 等. 1961—2010年青藏高原降水时空变化特征分析[J]. 冰川冻土, 2016, 38(5): 1233-1240. | |
78 | Zhang Mingli, Wen Zhi, Xue Ke, et al. The effects of precipitation on thermal-moisture dynamics of active layer at Beiluhe permafrost region[J]. Journal of Arid Land Resources and Environment, 2016, 30(4): 159-164. |
张明礼, 温智, 薛珂, 等. 降水对北麓河地区多年冻土活动层水热影响分析[J]. 干旱区资源与环境, 2016, 30(4): 159-164. | |
79 | Zhang Mingli, Wen Zhi, Xue Ke. Soil moisture-heat migration characteristics within the permafrost active layer in Beiluhe[J]. Journal of Arid Land Resources and Environment, 2015, 29(9):176-181. |
张明礼, 温智, 薛珂. 北麓河多年冻土活动层水热迁移规律分析[J]. 干旱区资源与环境, 2015, 29(9): 176-181. | |
80 | Li Desheng, Wen Zhi, Zhang Mingli, et al. The quantitative analysis of the hydro-thermal dynamic of permafrost active layer effected by precipitation[J]. Journal of Arid Land Resources and Environment, 2017, 31(7): 108-114. |
李德生, 温智, 张明礼, 等. 降水对多年冻土活动层水热影响定量分析[J]. 干旱区资源与环境, 2017, 31(7): 108-114. | |
81 | Wen Z, Zhang M L, Ma W, et al. Thermal-moisture dynamics of embankments with asphalt pavement in permafrost regions of central Tibetan Plateau[J]. European Journal of Environmental and Civil Engineering, 2014, 19(4): 1-13. |
82 | Wilhelm K R, Bockheim J G, Kung S. Active layer thickness prediction on the Western Antarctic Peninsula[J]. Permafrost and Periglacial Process, 2015, 26: 188-199. |
83 | Uxa T. Discussion on ‘active layer thickness prediction on the Western Antarctic Peninsula’ by Wilhelmet al. (2015) [J]. Permafrost and Periglacial Processes, 2017, 28: 493-498. |
84 | Kudryavtsev V A, Garagulya L S, Yeva K A K, et al. Fundamentals of frost forecasting in geological engineering investigations, Nauka, Moscow[J]. Draft translation 606. CRREL, Hanover, NH. 1977: 489. |
85 | Anisimov O A, Shiklomanov N I, Nelson F E. Effects of global warming on permafrost and active-layer thickness: results from transient general circulation models[J]. Global and Planetary Change, 1997, 15: 61-77. |
86 | Anisimov O A, Reneva S A. Permafrost and changing climate: the Russian perspective[J]. Ambio, 2006, 35: 169-175. |
87 | Nelson F E, Anisimov O A, Shiklomanov N I. Climate change and hazard potential in northern permafrost regions[J]. Nature, 2001, 410: 889-890. |
88 | Nelson F E, Anisimov O A, Shiklomanov N I. Climate change and hazard zonation in the circum-arctic permafrost regions[J]. Natural Hazards, 2002, 26(3): 203-225. |
89 | Anisimov O A, Lavrov S A, Reneva S A. Emission of methane from the Russian frozen wetlands under the conditions of the changing climate[J]. Problems of Ecological Modeling and Monitoring of Ecosystems, 2005: 124-142. |
90 | Pang Q Q, Cheng G D, Li S X, et al. Active layer thickness calculation over the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2009, 57: 23-28. |
91 | Luo D L, Jin H J, Marchenko S, et al. Distribution and changes of active layer thickness (ALT) and soil temperature (TTOP) in the source area of the Yellow River using the GIPL model[J]. Science China Earth Sciences, 2014, 57(8): 1834-1845. |
92 | Shiklomanov NI, Nelson FE. Analytic representation of the active layer thickness field, Kuparuk River Basin, Alaska[J]. Ecological Modeling, 1999, 123(2/3): 105-125. |
93 | Yin G A, Niu F J, Lin Z J, et al. Performance comparison of permafrost models in Wudaoliang Basin, Qinghai-Tibet Plateau, China[J]. Jounal of Mountain Science, 2016, 13(7): 1162-1173. |
[1] | 李智斌, 赵林, 刘广岳, 邹德富, 汪凌霄, 杨斌, 杜二计, 胡国杰, 周华云, 王翀, 幸赞品, 赵建婷, 殷秀峰, 迟鸿飞, 谭昌海, 陈文. 冻结季沱沱河源多年冻土区活动层土壤水分含量分析[J]. 冰川冻土, 2022, 44(1): 56-68. |
[2] | 张凤, 范成彦, 牟翠翠, 孙文, 彭小清, 张廷军. 积雪对祁连山区黑河上游活动层热状态的影响研究[J]. 冰川冻土, 2021, 43(6): 1628-1640. |
[3] | 蒋雨芹,文军,吕少宁,王作亮,刘闻慧,武月月,邓浩. 地基微波遥感评估黄河源区草原下垫面土壤冻融过程研究[J]. 冰川冻土, 2021, 43(6): 1718-1731. |
[4] | 刘志云,黄川,于晖,钟振涛,崔福庆. 青藏工程走廊活动层厚度预测模型与分布特征研究[J]. 冰川冻土, 2021, 43(5): 1458-1467. |
[5] | 冯晓琳,张艳林,常晓丽. 大兴安岭湿地多年冻土区活动层水热特征分析[J]. 冰川冻土, 2021, 43(5): 1468-1479. |
[6] | 温理想,郭蒙,黄书博,于方冰,钟超,周粉粉. 大兴安岭北部多年冻土区植被对活动层厚度变化的响应[J]. 冰川冻土, 2021, 43(5): 1531-1541. |
[7] | 黄克威, 王根绪, 宋春林, 俞祁浩. 基于LSTM的青藏高原冻土区典型小流域径流模拟及预测[J]. 冰川冻土, 2021, 43(4): 1144-1156. |
[8] | 付子腾,吴青柏,DYCK Miles,何海龙. 一种新的土壤冻融特征曲线模型[J]. 冰川冻土, 2021, 43(2): 437-452. |
[9] | 赵强, 吴从林, 罗平安, 王康, 李红珍, 黄介生. 冻融期东北农田土壤温度和水分变化规律及影响因素分析[J]. 冰川冻土, 2020, 42(3): 986-995. |
[10] | 原黎明, 赵林, 胡国杰, 马露, 周华云, 刘世博, 乔永平. 青藏高原中部典型下垫面活动层水热动态及其热扩散率研究[J]. 冰川冻土, 2020, 42(2): 378-389. |
[11] | 戴黎聪, 柯浔, 张法伟, 杜岩功, 李以康, 郭小伟, 李茜, 林丽, 曹广民. 青藏高原季节冻土区土壤冻融过程水热耦合特征[J]. 冰川冻土, 2020, 42(2): 390-398. |
[12] | 马俊杰, 李韧, 刘宏超, 吴通华, 肖瑶, 杜宜臻, 杨淑华, 史健宗, 乔永平. 青藏高原多年冻土区活动层水热特性研究进展[J]. 冰川冻土, 2020, 42(1): 195-204. |
[13] | 徐玲玲, 高彩虹, 王佳铭, 金会军, 吴青柏, DYCK Miles, 何海龙. 时域反射仪(TDR)测定土壤含水量标定曲线评价与方案推荐[J]. 冰川冻土, 2020, 42(1): 265-275. |
[14] | 王愿斌, 王佳铭, 樊媛媛, 陈娟, Miles Dyck, 金会军, 何海龙. 土壤水分特征曲线模型模拟性能评价[J]. 冰川冻土, 2019, 41(6): 1448-1455. |
[15] | 罗伦, 朱立平, 王永杰, 杨威, 旦增, 张宏波. 藏东南嘎隆拉冰川表碛冻融过程与零点幕效应[J]. 冰川冻土, 2019, 41(4): 751-760. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000