1 |
Zou Defu, Zhao Lin, Sheng Yu, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2527-2542.
|
2 |
Zhao Lin, Zou Defu, Hu Guojie, et al. Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) Plateau[J]. Permafrost and Periglacial Processes, 2020, 31(3): 396-405.
|
3 |
Obu J, Westermann S, Bartsch A, et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000—2016 at 1 km2 scale[J]. Earth-Science Reviews, 2019, 193: 299-316.
|
4 |
Yang Meixue, Wang Xuejia, Pang Guojin, et al. The Tibetan Plateau cryosphere: observations and model simulations for current status and recent changes[J]. Earth-Science Reviews, 2019, 190: 353-369.
|
5 |
Mu Cuicui, Abbott B W, Norris A J, et al. The status and stability of permafrost carbon on the Tibetan Plateau[J]. Earth-Science Reviews, 2020, 211: 103433.
|
6 |
Kokelj S V, Jorgenson M T. Advances in thermokarst research[J]. Permafrost and Periglacial Processes, 2013, 24(2): 108-119.
|
7 |
Muster S, Roth K, Langer M, et al. PeRL: a circum-Arctic permafrost region pond and lake database[J]. Earth System Science Data, 2017, 9(1): 317-348.
|
8 |
Niu Fujun, Luo Jing, Lin Zhanju, et al. Morphological characteristics of thermokarst lakes along the Qinghai-Tibet engineering corridor[J]. Arctic, Antarctic, and Alpine Research, 2014, 46(4): 963-974.
|
9 |
Wei Zhiqiang, Du Zhiheng, Wang Lei, et al. Sentinel-based inventory of thermokarst lakes and ponds across permafrost landscapes on the Qinghai-Tibet Plateau[J]. Earth and Space Science, 2021, 8: e2021EA001950.
|
10 |
Grosse G, Jones B, Arp C. Thermokarst lakes, drainage, and drained basins[M]. San Diego, CA, USA: Academic Press, 2013: 325-353.
|
11 |
Lin Zhanju, Niu Fujun, Xu Zhiying, et al. Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes, 2010, 21(4): 315-324.
|
12 |
Morgenstern A, Grosse G, Günther F, et al. Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta[J]. The Cryosphere, 2011, 5: 1495-1545.
|
13 |
Boike J, Georgi C, Kirilin G, et al. Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia: observations and modeling (Lena River Delta, Siberia)[J]. Biogeosciences, 2015, 12(20): 5941-5965.
|
14 |
Langer M, Westermann S, Boike J, et al. Rapid degradation of permafrost underneath waterbodies in tundra landscapes: toward a representation of thermokarst in land surface models[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(12): 2446-2470.
|
15 |
Plug L J, West J J. Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement[J]. Journal of Geophysical Research: Earth Surface, 2009, 114(F1): F01002.
|
16 |
Luo Jing, Niu Fujun, Lin Zhangju, et al. Thermokarst lake changes between 1969 and 2010 in the Beilu River Basin, Qinghai-Tibet Plateau, China[J]. Science Bulletin, 2015, 60(5): 556-564.
|
17 |
Lin Zhangju, Luo Jing, Niu Fujun. Development of a thermokarst lake and its thermal effects on permafrost over nearly 10 yr in the Beiluhe Basin, Qinghai-Tibet Plateau[J]. Geosphere, 2016, 12(2): 632-643.
|
18 |
Ling Feng, Wu Qingbai, Zhang Tingjun, et al. Modelling open-talik formation and permafrost lateral thaw under a thermokarst lake, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes, 2012, 23(4): 312-321.
|
19 |
Luo Jing, Niu Fujun, Lin Zhanju, et al. Permafrost features around a representative thermokarst lake in Beiluhe on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1110-1117.
|
|
罗京, 牛富俊, 林战举, 等. 青藏高原北麓河地区典型热融湖塘周边多年冻土特征研究[J]. 冰川冻土, 2012, 34(5): 1110-1117.
|
20 |
You Yanhui, Yu Qihao, Pan Xicai, et al. Thermal effects of lateral supra-permafrost water flow around a thermokarst lake on the Qinghai-Tibet Plateau[J]. Hydrological Processes, 2017, 31(13): 2429-2437.
|
21 |
Ling Feng, Wu Qingbai. Numerical simulation of influence of thermokarst lake horizontal expansion rate on talik development beneath thermokarst lakes on Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2017, 39(2): 328-335.
|
|
令锋, 吴青柏. 青藏高原热融湖横向扩张速率对湖下融区发展影响的数值模拟[J]. 冰川冻土, 2017, 39(2): 328-335.
|
22 |
Li Shuangyang, Zhan Hongbing, Lai Yuanming, et al. The coupled moisture-heat process of permafrost around a thermokarst pond in Qinghai-Tibet Plateau under global warming[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(4): 836-853.
|
23 |
Yang Zhen, Wen Zhi, Niu Fujun, et al. Research on thermokarst lakes in permafrost regions: present state and prospect[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1519-1526.
|
|
杨振, 温智, 牛富俊, 等. 多年冻土区热融湖研究现状与展望[J]. 冰川冻土, 2013, 35(6): 1519-1526.
|
24 |
Yin Guo’an, Niu Fujun, Lin Zhangju, et al. Effects of local factors and climate on permafrost conditions and distribution in Beiluhe Basin, Qinghai-Tibet Plateau, China[J]. Science of The Total Environment, 2017, 581/582: 472-485.
|
25 |
Lin Zhanju, Gao Zeyong, Fan Xingwen, et al. Factors controlling near surface ground-ice characteristics in a region of warm permafrost, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Geoderma, 2020, 376: 114540.
|
26 |
Yang Kun, He Jie. China meteorological forcing dataset (1979—2018)[DS]. Beijing: National Tibetan Plateau Data Center, 2019.
|
27 |
Taylor K E, Stouffer R J, Meehl G A. An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012, 93(4): 485-498.
|
28 |
Lin Zhanju, Niu Fujun, Fang Jianhong, et al. Interannual variations in the hydrothermal regime around a thermokarst lake in Beiluhe, Qinghai-Tibet Plateau[J]. Geomorphology, 2017, 276: 16-26.
|
29 |
Westermann S, Schuler T V, Gisnås K, et al. Transient thermal modeling of permafrost conditions in Southern Norway[J]. The Cryosphere, 2013, 7(2): 719-739.
|
30 |
Xu Xiaozu, Wang Jiacheng, Zhang Lixin. Physics of frozen soil[M]. 2nd ed. Beijing: Science Press, 2010.
|
|
徐敩祖, 王家澄, 张立新. 冻土物理学[M]. 2版. 北京: 科学出版社, 2010.
|
31 |
Jafarov E E, Marchenko S S, Romanovsky V E. Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset[J]. The Cryosphere, 2012, 6(20): 613-624.
|
32 |
Jan N, Moritz L, Martin L C P, et al. Effects of multi-scale heterogeneity on the simulated evolution of ice-rich permafrost lowlands under a warming climate[J]. The Cryosphere, 2021, 15(3): 1399-1422.
|
33 |
Liston G E, Hall D K. An energy-balance model of lake-ice evolution[J]. Journal of Glaciology, 1995, 41(138): 373-382.
|
34 |
Wu Qingbai, Zhang Tingjun, Liu Yongzhi. Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010[J]. The Cryosphere, 2012, 6(3): 607-612.
|
35 |
Pan Xicai, Li Yanping, Yu Qihao, et al. Effects of stratified active layers on the high-altitude permafrost warming: a case study on the Qinghai-Tibet Plateau[J]. The Cryosphere, 2016, 10(4): 1591-1603.
|
36 |
Luo Jing, Yin Guo’an, Niu Fujun, et al. High spatial resolution modeling of climate change impacts on permafrost thermal conditions for the Beiluhe Basin, Qinghai-Tibet Plateau[J]. Remote Sensing, 2019, 11(11): 1294.
|
37 |
Pelletier J D. Formation of oriented thaw lakes by thaw slumping[J]. Journal of Geophysical Research: Earth Surface, 2005, 110(F2): F02018.
|
38 |
Yang Zhen, Wen Zhi, Ma Wei, et al. Numerical simulation on the dynamic evolution process of thermokarst lake based on the moving mesh technology[J]. Journal of Glaciology and Geocryology, 2015, 37(1): 183-191.
|
|
杨振, 温智, 马巍, 等. 基于移动网格技术的热融湖动态演化过程数值模拟[J]. 冰川冻土, 2015, 37(1): 183-191.
|
39 |
Matell N, Anderson R S, Overeem I, et al. Modeling the subsurface thermal impact of Arctic thaw lakes in a warming climate[J]. Computers and Geosciences, 2013, 53: 69-79.
|