1 |
Qin Dahe, Yao Tandong, Ding Yongjian, et al. Glossary of cryospheric science[M]. Rev. ed. Beijing: China Meteorological Press, 2016.
|
|
秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学词典[M]. 修订版. 北京: 气象出版社, 2016.
|
2 |
Dobiński W. Permafrost active layer[J]. Earth-Science Reviews, 2020, 208: 103301.
|
3 |
Dobiński W. Permafrost[J]. Earth-Science Reviews, 2011, 108(3/4): 158-169.
|
4 |
Hu Guojie, Zhao Lin, Wu Xiaodong, et al. Modeling permafrost properties in the Qinghai-Xizang (Tibet) Plateau[J]. Science China: Earth Sciences, 2015, 58(12): 2309-2326.
|
5 |
Liu Guangyue, Zhao Lin, Xie Changwei, et al. Variation characteristics and impact factors of the depth of zero annual amplitude of ground temperature in permafrost regions on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1189-1200.
|
|
刘广岳, 赵林, 谢昌卫, 等. 青藏高原多年冻土区地温年变化深度的变化规律及影响因素[J]. 冰川冻土, 2016, 38(5): 1189-1200.
|
6 |
Walvoord M A, Kurylyk B L. Hydrologic impacts of thawing permafrost: a review[J/OL]. Vadose Zone Journal, 2016, 15(6) [2022-04-12]. .
|
7 |
Cao Wei, Sheng Yu, Wu Jichun, et al. Soil hydrological process and migration mode influenced by the freeze-thaw process in the activity layer of permafrost regions in Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2021, 184: 103236.
|
8 |
Mu Cuicui, Abbott B W, Norris A J, et al. The status and stability of permafrost carbon on the Tibetan Plateau[J]. Earth-Science Reviews, 2020, 211: 103433.
|
9 |
Mu Cuicui, Abbott B W, Wu Xiaodong, et al. Thaw depth determines dissolved organic carbon concentration and biodegradability on the northern Qinghai-Tibetan Plateau[J]. Geophysical Research Letters, 2017, 44(18): 9389-9399.
|
10 |
Wu Xiaodong, Fang Hongbing, Zhao Yonghua, et al. A conceptual model of the controlling factors of soil organic carbon and nitrogen densities in a permafrost-affected region on the eastern Qinghai-Tibetan Plateau[J/OL]. Journal of Geophysical Research: Biogeosciences, 2017, 122(7) [2022-04-12]. .
|
11 |
Zou Defu, Zhao Lin, Sheng Yu, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2527-2542.
|
12 |
Luo Dongliang, Wu Qingbai, Jin Huijun, et al. Recent changes in the active layer thickness across the Northern Hemisphere[J]. Environmental Earth Sciences, 2016, 75(7): 555.
|
13 |
Li Ren, Zhao Lin, Ding Yongjian, et al. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region[J]. Chinese Science Bulletin, 2012, 57(35): 4609-4616.
|
14 |
Duan Keqin, Yao Tandong, Wang Ninglian, et al. The difference in precipitation variability between the north and south Tibetan Plateaus[J]. Journal of Glaciology and Geocryology, 2008, 30(5): 726-732.
|
|
段克勤, 姚檀栋, 王宁练, 等. 青藏高原南北降水变化差异研究[J]. 冰川冻土, 2008, 30(5): 726-732.
|
15 |
Du Erji, Zhao Lin, Zou Defu, et al. Soil moisture calibration equations for active layer GPR detection: a case study specially for the Qinghai-Tibet Plateau permafrost regions[J]. Remote Sensing, 2020, 12(4): 605.
|
16 |
Roerink G J, Menenti M, Verhoef W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series[J]. International Journal of Remote Sensing, 2000, 21(9): 1911-1917.
|
17 |
Xu Yongming, Shen Yan, Wu Ziyue. Spatial and temporal variations of land surface temperature over the Tibetan Plateau based on harmonic analysis[J]. Mountain Research and Development, 2013, 33(1): 85-94.
|
18 |
Zou Defu, Zhao Lin, Wu Tonghua, et al. Modeling ground surface temperature by means of remote sensing data in high-altitude areas: test in the central Tibetan Plateau with application of moderate-resolution imaging spectroradiometer Terra/Aqua land surface temperature and ground-based infrared radiometer[J]. Journal of Applied Remote Sensing, 2014, 8: 083516.
|
19 |
Luo Dongliang, Jin Huijun, Lin Lin, et al. Distributive features and controlling factors of permafrost and the active layer thickness in the Bayan Har Mountains along the Qinghai-Kangding Highway on northeastern Qinghai-Tibet Plateau[J]. Scientia Geographica Sinica, 2013, 33(5): 635-640.
|
|
罗栋梁, 金会军, 林琳, 等. 巴颜喀拉山青康公路沿线多年冻土和活动层分布特征及影响因素[J]. 地理科学, 2013, 33(5): 635-640.
|
20 |
Xu Xuezu, Wang Jiacheng, Zhang Lixin. Physics of frozen soil[M]. Beijing: Science Press, 2001: 87-89.
|
|
徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001: 87-89.
|
21 |
Pang Qiangqiang, Li Shuxun, Wu Tonghua, et al. Simulated distribution of active layer depths in the frozen ground regions of Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2006, 28(3): 390-395.
|
|
庞强强, 李述训, 吴通华, 等. 青藏高原冻土区活动层厚度分布模拟[J]. 冰川冻土, 2006, 28(3): 390-395.
|
22 |
Yang Chengsong, Cheng Guodong. Probabilistic prediction of the impacts of climate change on permafrost stability along the Qinghai-Tibet Railway (II): active layer thickness and settlement deformation[J]. Journal of Glaciology and Geocryology, 2011, 33(3): 469-478.
|
|
杨成松, 程国栋. 气候变化条件下青藏铁路沿线多年冻土概率预报(II): 活动层厚度与沉降变形[J]. 冰川冻土, 2011, 33(3): 469-478.
|
23 |
Du Yizhen, Li Ren, Wu Tonghua, et al. Study of soil thermal conductivity: research status and advances[J]. Journal of Glaciology and Geocryology, 2015, 37(4): 1067-1074.
|
|
杜宜臻, 李韧, 吴通华, 等. 土壤热导率的研究现状及其进展[J]. 冰川冻土, 2015, 37(4): 1067-1074.
|
24 |
Kojima Y, Heitman J L, Sakai M, et al. Bulk density effects on soil hydrologic and thermal characteristics: a numerical investigation[J]. Hydrological Processes, 2018, 32(14): 2203-2216.
|
25 |
Li Yi, Shao Ming’an, Wang Wenyan, et al. Influence of soil textures on the thermal properties[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(4): 62-65.
|
|
李毅, 邵明安, 王文焰, 等. 质地对土壤热性质的影响研究[J]. 农业工程学报, 2003, 19(4): 62-65.
|