冰川冻土 ›› 2022, Vol. 44 ›› Issue (2): 387-401.doi: 10.7522/j.issn.1000-0240.2022.0045
• 冰冻圈与全球变化 • 上一篇
焦亚青1,2(), 宋立全1,2(
), 臧淑英1,2(
), 孙超峰1,2, 鲁博权1,2
收稿日期:
2021-10-24
修回日期:
2022-01-07
出版日期:
2022-04-30
发布日期:
2022-06-10
通讯作者:
臧淑英
E-mail:623755281@qq.com;songliquan116@163.com;hsdzsy6311@163.com
作者简介:
焦亚青,硕士研究生,主要从事多年冻土氮循环研究. E-mail: 623755281@qq.com基金资助:
Yaqing JIAO1,2(), Liquan SONG1,2(
), Shuying ZANG1,2(
), Chaofeng SUN1,2, Boquan LU1,2
Received:
2021-10-24
Revised:
2022-01-07
Online:
2022-04-30
Published:
2022-06-10
Contact:
Shuying ZANG
E-mail:623755281@qq.com;songliquan116@163.com;hsdzsy6311@163.com
摘要:
大兴安岭多年冻土泥炭地是对全球变暖响应敏感的地区之一。在全球变暖、多年冻土退化背景下,为了探明秋季冻融对多年冻土泥炭地无机氮时空变化的影响,本研究于2019年9—11月以大兴安岭三种多年冻土泥炭地为研究对象进行野外原位实验,分析了秋季冻融前、中和后期多年冻土泥炭地浅层和深层土壤无机氮的时空变化特征以及浅层和深层土壤含水量和温度的变化规律,建立了土壤无机氮含量与土壤温度和含水量间的多元线性回归模型。研究表明:多年冻土小叶章泥炭地(XY)、兴安落叶松-泥炭藓泥炭地(XA)和白毛羊胡子苔草泥炭地(BM)的土壤铵态氮(NH4+-N)含量变化范围:(1.00±0.00)~(20.60±0.20) mg·kg-1,硝态氮(NO3--N)含量的变化范围:(0.02±0.01)~(14.64±1.11) mg·kg-1,且无机氮以土壤NH4+-N为主;秋季冻融后期无机氮含量明显高于前期。尽管水热交互作用对该时期无机氮没有显著影响,但是在不同冻融阶段,无机氮对环境因子的响应程度存在差异:在秋季冻融前、中和后期浅层无机氮动态分别与浅层温度和含水量的变化相关,但在整个秋季冻融期间BM浅层无机氮含量仅对10~20 cm含水量存在响应(R2=0.344,P<0.01)。研究表明,秋季冻融期内,多年冻土泥炭地无机氮发生初步累积,且浅层环境因子对无机氮响应程度最大。本研究可补充大兴安岭多年冻土泥炭地秋季冻融对土壤无机氮影响研究的相关数据,并为多年冻土泥炭地响应全球变暖的温室气体释放的研究提供基础数据支撑。
中图分类号:
焦亚青, 宋立全, 臧淑英, 孙超峰, 鲁博权. 大兴安岭多年冻土泥炭地无机氮动态对秋季冻融的响应[J]. 冰川冻土, 2022, 44(2): 387-401.
Yaqing JIAO, Liquan SONG, Shuying ZANG, Chaofeng SUN, Boquan LU. Response of inorganic nitrogen dynamics to autumn freeze-thaw in permafrost peatlands of the Greater Higgnan Mountains[J]. Journal of Glaciology and Geocryology, 2022, 44(2): 387-401.
表5
控制水热条件下无机氮变化研究的比较"
生态系统 | 研究地点 | 经纬度 | 实验类型 | 冻融处理/次数 | 含水量 | NH4+-N | NO3--N |
---|---|---|---|---|---|---|---|
森林 | 长白山地区温带森林土壤 | 127° E, 42° N[ | LT | -10 ℃→10 ℃, 12 h/1、3、5、7、11、15、22、28、36次 | 秋季低含水量(40%) | 不变 | 增加 |
127° E, 42° N[ | LT | -20 ℃→ 15 ℃, 12 h/1、3、5、9、14、21、28、35次 | 最大田间持水量的60% | 增加 | 增加 | ||
河岸带不同植被类型 | 123° E, 41° N[ | LT | -5 ℃、-20 ℃→ 5℃, 12 h/0、1、5、10、20、30次 | 原土壤含水量 | 增加 | 农田变化不显著 | |
天山森林土壤 | 87° E, 43° N[ | ST | 0 ℃以上→ 0 ℃以下, 3 h/3次 | 原土壤含水量 | 草地和灌丛表现为先减少后增加 | 增加 | |
大兴安岭落叶松林土壤 | 121° E, 50° N[ | LT | -5 ℃→ 8 ℃, 24 h/1、3、5、7、15次 | 60%土壤饱和含水量 | 低于恒温条件下的累积量 | 低于恒温条件下的累积量 | |
草地 | 青藏高原高寒草甸区 | 103° E, 32° N[ | LT | -4 ℃、-20 ℃ → 4℃, 8 h/1、3、5、25、60次 | 原土壤含水量 | 先增后减 | 先增后减 |
湿地 | 三江平原沼泽湿地 | 133° E, 47° N[ | LT | -5 ℃、-25 ℃→ 5 ℃, 1 d/1、2、4、6、10次 | (352.5±1.6) g·kg-1 | 增加 | 增加 |
小兴安岭湿地土壤 | 129° E, 48° N[ | LT | -20 ℃→ 5 ℃, 24 h/5次 | 原土壤含水量 | 先增后减 | 先减后增 | |
128° E, 48° N[ | LT | -5 ℃、-25 ℃→ 5 ℃, 24 h/0、1、2、4、9次 | 原土壤含水量 | 先增后减 | 先减后增 |
附表6
秋季冻融后期冻土泥炭地的环境变量与无机氮浓度的相关分析"
泥炭地类型 | XY | XY | XY | XY | XY | XA | BM | |
---|---|---|---|---|---|---|---|---|
浅层NH4+-N | 整体NH4+-N | 浅层NO3--N | 深层NO3--N | 整体NO3--N | 无机氮 | 无机氮 | ||
土温 | 5 cm | 0.668(0.101) | 0.803*(0.030) | 0.086(0.855) | / | 0.088(0.851) | / | / |
10 cm | 0.795*(0.033) | 0.862*(0.013) | 0.257(0.578) | / | 0.256(0.580) | |||
15 cm | 0.825*(0.022) | 0.699(0.081) | 0.811*(0.027) | / | 0.822*(0.023) | |||
25 cm | / | 0.156(0.738) | / | 0.800*(0.031) | 0.815*(0.026) | |||
30 cm | / | 0.154(0.742) | / | 0.808*(0.028) | 0.821*(0.024) | |||
35 cm | / | 0.125(0.790) | / | 0.795*(0.033) | 0.809*(0.028) | |||
40 cm | / | 0.137(0.770) | / | 0.769*(0.043) | 0.780*(0.039) | |||
45 cm | / | 0.179(0.701) | / | 0.784*(0.037) | 0.794*(0.033) | |||
含水量 | 30~40 cm | / | 0.370(0.414) | / | 0.812*(0.026) | 0.803*(0.030) |
附表1
3种多年冻土泥炭地的土壤温度、含水量方差分析"
时期 | 前期 | 中期 | 后期 | 整个时期 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
泥炭地类型 | XY×XA | XY×BM | XA×BM | XY×XA | XY×BM | XA×BM | XY×XA | XY×BM | XA×BM | XY×XA | XY×BM | XA×BM | |
土温 | 0 cm | 0.065 | 0.148 | 0.657 | 0.002** | 0.018* | 0.180 | 0.443 | 0.166 | 0.519 | 0.045* | 0.061 | 0.892 |
5 cm | 0.823 | 0.449 | 0.330 | 0.336 | 0.648 | 0.607 | 0.619 | 0.357 | 0.665 | 0.846 | 0.948 | 0.796 | |
10 cm | 0.139 | 0.011* | 0.215 | 0.338 | 0.458 | 0.901 | 0.419 | 0.281 | 0.779 | 0.610 | 0.349 | 0.668 | |
15 cm | 0.026* | 0.001** | 0.125 | 0.050* | 0.043* | 0.945 | 0.450 | 0.719 | 0.689 | 0.161 | 0.019* | 0.323 | |
20 cm | 0.012* | 0.001** | 0.090 | 0.159 | 0.032* | 0.403 | 0.806 | 0.916 | 0.725 | 0.113 | 0.006** | 0.225 | |
25 cm | 0.007** | 0.001** | 0.108 | 0.068 | 0.021* | 0.569 | 0.932 | 0.636 | 0.576 | 0.060 | 0.003** | 0.227 | |
30 cm | 0.001** | 0.001** | 0.249 | 0.035* | 0.013* | 0.636 | 0.950 | 0.664 | 0.620 | 0.024* | 0.002** | 0.359 | |
35 cm | 0.001** | 0.001** | 0.268 | 0.027* | 0.014* | 0.771 | 0.947 | 0.712 | 0.663 | 0.015* | 0.002** | 0.422 | |
40 cm | 0.001** | 0.001** | 0.259 | 0.259 | 0.060 | 0.410 | 0.951 | 0.581 | 0.623 | 0.016* | 0.001** | 0.338 | |
45 cm | 0.001** | 0.001** | 0.252 | 0.222 | 0.067 | 0.504 | 0.809 | 0.435 | 0.588 | 0.010* | 0.001** | 0.318 | |
50 cm | 0.001** | 0.001** | 0.154 | 0.129 | 0.092 | 0.852 | 0.956 | 0.739 | 0.781 | 0.009** | 0.001** | 0.436 | |
含水量 | 0~10 cm | 0.001** | 0.001** | 0.284 | 0.005** | 0.001** | 0.600 | 0.697 | 0.711 | 0.451 | 0.001** | 0.001** | 0.292 |
10~20 cm | 0.001** | 0.001** | 0.338 | 0.015* | 0.021* | 0.887 | 0.397 | 0.561 | 0.786 | 0.001** | 0.001** | 0.826 | |
20~30 cm | 0.001** | 0.001** | 0.919 | 0.044* | 0.077 | 0.775 | 0.141 | 0.142 | 0.995 | 0.001** | 0.001** | 0.941 | |
30~40 cm | 0.001** | 0.001** | 0.634 | 0.025* | 0.347 | 0.155 | 0.002** | 0.010* | 0.459 | 0.001** | 0.001** | 0.404 | |
40~50 cm | 0.001** | 0.001** | 0.440 | 0.020* | 0.110 | 0.393 | 0.050 | 0.089 | 0.769 | 0.001** | 0.001** | 0.393 |
附表2
3种多年冻土泥炭地在不同土层深度的无机氮浓度差异性分析"
时期 | 前期 | 中期 | 后期 | 整个时期 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
泥炭地类型 | XY×XA | XY×BM | XA×BM | XY×XA | XY×BM | XA×BM | XY×XA | XY×BM | XA×BM | XY×XA | XY×BM | XA×BM | |
浅层NH4+-N | 0~20 cm | 0.887 | 0.973 | 0.914 | 0.732 | 0.900 | 0.828 | 0.809 | 0.572 | 0.422 | 0.671 | 0.917 | 0.597 |
深层NH4+-N | 20~50 cm | 0.262 | 0.911 | 0.311 | 0.593 | 0.136 | 0.323 | 0.364 | 0.364 | 0.079 | 0.370 | 0.259 | 0.045* |
整体NH4+-N | 0~50 cm | 0.444 | 0.932 | 0.496 | 0.934 | 0.492 | 0.545 | 0.464 | 0.377 | 0.116 | 0.454 | 0.465 | 0.142 |
浅层NO3--N | 0~20 cm | 0.066 | 0.029* | 0.679 | 0.052 | 0.041 | 0.905 | 0.418 | 0.404 | 0.980 | 0.018* | 0.009* | 0.777 |
深层NO3--N | 20~50 cm | 0.030* | 0.011* | 0.322 | 0.206 | 0.247 | 0.910 | 0.301 | 0.513 | 0.695 | 0.026* | 0.034* | 0.903 |
整体NO3--N | 0~50 cm | 0..030* | 0.010* | 0.616 | 0.133 | 0.158 | 0.920 | 0.340 | 0.462 | 0.821 | 0.010* | 0.011* | 0.981 |
附表4
秋季冻融前期冻土泥炭地的环境变量与无机氮浓度的相关分析"
泥炭地类型 | XY | XY | XA | XA | XA | BM | BM | BM | |
---|---|---|---|---|---|---|---|---|---|
浅层NH4+-N | 整体NH4+-N | 浅层NH4+-N | 整体NH4+-N | 浅层NO3--N | 深层NH4+-N | 整体NH4+-N | 整体NO3--N | ||
土温 | 0 cm | 0.767*(0.044) | 0.849*(0.016) | 0.403(0.371) | 0.238(0.607) | -0.765*(0.045) | / | 0.415(0.354) | -0.756*(0.049) |
5 cm | 0.646(0.117) | 0.538(0.213) | 0.859*(0.013) | 0.876*(0.010) | -0.488(0.267) | / | 0.680(0.093) | -0.546(0.204) | |
10 cm | 0.687(0.088) | 0.584(0.169) | 0.810*(0.027) | 0.750(0.052) | -0.082(0.861) | / | 0.771*(0.042) | -0.170(0.715) | |
15 cm | 0.495(0.259) | 0.327(0.474) | 0.779*(0.039) | 0.799*(0.031) | -0.091(0.845) | / | 0.586(0.167) | -0.149(0.750) | |
含水量 | 20~30 cm | / | 0.119(0.799) | / | -0.272(0.555) | / | 0.653(0.112) | 0.736(0.059) | -0.788*(0.035) |
40~50 cm | / | 0.506(0.247) | / | -0.147(0.753) | / | 0.775*(0.041) | 0.652(0.112) | -0.705(0.077) |
附表5
秋季冻融中期冻土泥炭地的环境变量与无机氮浓度的相关分析"
泥炭地类型 | XY | XA | XA | BM | BM | BM | BM | |
---|---|---|---|---|---|---|---|---|
整体NO3--N | 浅层NO3--N | 整体NO3--N | 浅层NH4+-N | 深层NH4+-N | 整体NH4+-N | 整体NO3--N | ||
土温 | 0 cm | -0.842*(0.018) | -0.274(0.552) | -0.042(0.929) | -0.026(0.957) | / | -0.060(0.899) | -0.437(0.327) |
5 cm | -0.145(0.757) | -0.749(0.053) | -0.895*(0.006) | -0.656(0.110) | / | -0.706(0.076) | -0.424(0.343) | |
10 cm | 0.277(0.548) | -0.419(0.349) | -0.757*(0.049) | -0.744(0.055) | / | -0.779*(0.039) | -0.470(0.287) | |
15 cm | -0.057(0.903) | -0.452(0.309) | -0.547(0.203) | -0.837*(0.019) | / | -0.884*(0.008) | -0.403(0.371) | |
20 cm | 0.059(0.900) | -0.419(0.349) | -0.352(0.439) | -0.685(0.089) | -0.761*(0.047) | -0.732(0.061) | -0.579(0.173) | |
30 cm | 0.424(0.344) | / | -0.410(0.361) | / | -0.756*(0.049) | -0.718(0.069) | -0.558(0.193) | |
35 cm | 0.348(0.444) | / | -0.361(0.426) | / | -0.777*(0.040) | -0.746(0.054) | -0.552(0.199) | |
45 cm | 0.283(0.539) | / | -0.434(0.331) | / | -0.810*(0.027) | -0.759*(0.048) | -0.321(0.483) | |
50 cm | 0.274(0.552) | / | -0.322(0.481) | / | -0.888*(0.008) | -0.855*(0.014) | -0.512(0.240) | |
含水量 | 0~10 cm | -0.511(0.241) | -0.814*(0.026) | -0.674(0.097) | 0.486(0.268) | / | 0.455(0.305) | 0.792*(0.034) |
10~20 cm | -0.441(0.322) | -0.668(0.101) | -0.705(0.077) | 0.745(0.055) | / | 0.770*(0.043) | 0.046(0.922) |
1 | Qin Dahe. Glossary of cryospheric science[M]. 2nd ed. Beijing: China Meteorological Press, 2016. |
秦大河. 冰冻圈科学辞典[M]. 2版. 北京: 气象出版社, 2016. | |
2 | Sun Guangyou. Discussion on the symbiotic mechanisms of swamp with permafrost: taking Da-Xiao Hinggan Mountains as examples[J]. Journal of Glaciology and Geocryology, 2000, 22(4): 309-316. |
孙广友. 试论沼泽与冻土的共生机理——以中国大小兴安岭地区为例[J]. 冰川冻土, 2000, 22(4): 309-316. | |
3 | Hu Xingyun, Sun Zhigao. Effects of temperature and nitrogen input on nitrogen mineralization of soils in the newly created marshes of the Yellow River estuary[J]. Acta Ecologica Sinica, 2020, 40(24): 8882-8891. |
胡星云, 孙志高. 黄河口碱蓬湿地土壤氮矿化特征对温度及氮输入的响应[J]. 生态学报, 2020, 40(24): 8882-8891. | |
4 | Harden J W, Koven C D, Ping C L, et al. Field information links permafrost carbon to physical vulnerabilities of thawing[J]. Geophysical Research Letters, 2012, 39(15). |
5 | Jin Huijun, Yu Shaopeng, Lanzhi Lü, et al. Preliminary assessment of permafrost degradation and its trend in the Great and Small Xing’ an Mountains[J]. Journal of Glaciology and Geocryology, 2006, 28(4): 467-476. |
金会军, 于少鹏, 吕兰芝, 等. 大小兴安岭多年冻土退化及其趋势初步评估[J]. 冰川冻土, 2006, 28(4): 467-476. | |
6 | Marushchak M E, Pitkämäki A, Koponen H, et al. Hot spots for nitrous oxide emissions found in different types of permafrost peatlands[J]. Global Change Biology, 2011, 17(8): 2601-2614. |
7 | Wang Lianfeng, Cai Yanjiang, Xie Hongtu. Relationships of soil physical and microbial properties with nitrous oxide emission under effects of freezing-thawing cycles[J]. Chinese Journal of Applied Ecology, 2007, 18(10): 2361-2366. |
王连峰, 蔡延江, 解宏图. 冻融作用下土壤物理和微生物性状变化与氧化亚氮排放的关系[J]. 应用生态学报, 2007, 18(10): 2361-2366. | |
8 | Cai Yanjiang, Wang Xiaodan, Ding Weixin, et al. Effects of freeze-thaw on soil nitrogen transformation and n2o emission: a review[J]. Acta Pedologica Sinica, 2013, 50(5): 1032-1042. |
蔡延江, 王小丹, 丁维新, 等. 冻融对土壤氮素转化和N2O排放的影响研究进展[J]. 土壤学报, 2013, 50(5): 1032-1042. | |
9 | Zhao Haipeng, Mingxia Lü, Wang Yibo, et al. Spatiotemporal variation characteristics of soil water content and temperature within active layer at slope scale in the Fenghuoshan Basin, Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1158-1168. |
赵海鹏, 吕明侠, 王一博, 等. 青藏高原风火山流域坡面尺度活动层土壤水热时空变化特征[J]. 冰川冻土, 2020, 42(4): 1158-1168. | |
10 | Dai Licong, Ke Xun, Zhang Fawei, et al. Characteristics of hydro-thermal coupling during soil freezing-thawing process in seasonally frozen soil regions on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 390-398. |
戴黎聪, 柯浔, 张法伟, 等. 青藏高原季节冻土区土壤冻融过程水热耦合特征[J]. 冰川冻土, 2020, 42(2): 390-398. | |
11 | van Bochove E, Prévost D, Pelletier F. Effects of freeze-thaw and soil structure on nitrous oxide produced in a clay soil[J]. Soil Science Society of America Journal, 2000, 64(5): 1638-1643. |
12 | Gilliam F S, Cook A, Lyter S. Effects of experimental freezing on soil nitrogen dynamics in soils from a net nitrification gradient in a nitrogen-saturated hardwood forest ecosystem[J]. Canadian Journal of Forest Research, 2010, 40(3): 436-444. |
13 | Sulkava P, Huhta V. Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralisation in boreal forest soil[J]. Applied Soil Ecology, 2003, 22(3): 225-239. |
14 | Ludwig B, Teepe R, de Gerenyu V L, et al. CO2 and N2O emissions from gleyic soils in the Russian tundra and a German forest during freeze-thaw periods: a microcosm study[J]. Soil Biology and Biochemistry, 2006, 38(12): 3516-3519. |
15 | Schimel J P, Bilbrough C, Welker J M. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities[J]. Soil Biology and Biochemistry, 2004, 36(2): 217-227. |
16 | An Meiling, Zhang Bo, Sun Liwei, et al. Quantitative analysis of dynamic change of land use and its influencing factors in upper reaches of the Heihe River[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 355-363. |
安美玲, 张勃, 孙力炜, 等. 黑河上游土地利用动态变化及影响因素的定量分析[J]. 冰川冻土, 2013, 35(2): 355-363. | |
17 | Chen Lei, Chang Shunli, Zhang Yutao, et al. Response of soil gross nitrogen mineralization processes to seasonal freeze-thawing in the forests of Tianshan Mountain[J]. Acta Ecologica Sinica, 2020, 40(12): 3968-3978. |
陈磊, 常顺利, 张毓涛, 等. 天山林区土壤总氮矿化过程对季节性冻融的响应[J]. 生态学报, 2020, 40(12): 3968-3978. | |
18 | Li Guicai, Han Xingguo, Huang Jianhui, et al. A review of affecting factors of soil nitrogen mineralization in forest ecosystems[J]. Acta Ecologica Sinica, 2001, 21(7): 1187-1195. |
李贵才, 韩兴国, 黄建辉, 等. 森林生态系统土壤氮矿化影响因素研究进展[J]. 生态学报, 2001, 21(7): 1187-1195. | |
19 | Plymale A E, Boerner R E J, Logan T J. Relative nitrogen mineralization and nitrification in soils of two contrasting hardwood forests: Effects of site microclimate and initial soil chemistry[J]. Forest Ecology and Management, 1987, 21(1/2): 21-36. |
20 | Wang Guangjun, Tian Dalun, Zhu Fan, et al. Net nitrogen mineralization in soils under four forest communities in Hunan Province[J]. Acta Ecologica Sinica, 2009, 29(3): 1607-1615. |
王光军, 田大伦, 朱凡, 等. 湖南省4种森林群落土壤氮的矿化作用[J]. 生态学报, 2009, 29(3): 1607-1615. | |
21 | Xiao Haoyan, Liu Bao, Yu Zaipeng, et al. Seasonal dynamics of soil mineral nitrogen pools and nitrogen mineralization rate in different forests in subtropical China[J]. Chinese Journal of Applied Ecology, 2017, 28(3): 730-738. |
肖好燕, 刘宝, 余再鹏, 等. 亚热带不同林分土壤矿质氮库及氮矿化速率的季节动态[J]. 应用生态学报, 2017, 28(3): 730-738. | |
22 | Yu Xingxiu, Xu Miaomiao, Zhao Jinhui, et al. Nitrogen mineralization rate in different soil layers and its influence factors under plastic film mulched in Danjiangkou Reservoir area, China[J]. Chinese Journal of Applied Ecology, 2018, 29(4): 1259-1265. |
于兴修, 徐苗苗, 赵锦慧, 等. 丹江口库区覆膜土壤不同土层氮素矿化速率及其影响因素[J]. 应用生态学报, 2018, 29(4): 1259-1265. | |
23 | Herrmann A, Witter E. Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils[J]. Soil Biology and Biochemistry, 2002, 34(10): 1495-1505. |
24 | Gui Huiying, Li Xuejiang, Wang Jingyan, et al. Effects of temperature and moisture on soil nitrogen mineralization of Phyllostachys heterocycla plantation in the rainy area of Western China[J]. Journal of Sichuan Agricultural University, 2018, 36(6): 758-764. |
桂慧颖, 李雪江, 王景燕, 等. 温度和水分对华西雨屏区毛竹林土壤氮矿化的影响[J]. 四川农业大学学报, 2018, 36(6): 758-764. | |
25 | Niklińska M, Maryański M, Laskowski R. Effect of temperature on humus respiration rate and nitrogen mineralization: implications for global climate change[J]. Biogeochemistry, 1999, 44(3): 239-257. |
26 | Toczydlowski A J Z, Slesak R A, Kolka R K, et al. Effect of simulated emerald ash borer infestation on nitrogen cycling in black ash (Fraxinus nigra) wetlands in northern Minnesota, USA[J]. Forest Ecology and Management, 2020, 458: 117769. |
27 | Zhang Nanyi, Guo Rui, Song Piao, et al. Effects of warming and nitrogen deposition on the coupling mechanism between soil nitrogen and phosphorus in Songnen Meadow Steppe, northeastern China[J]. Soil Biology and Biochemistry, 2013, 65: 96-104. |
28 | Dridi I, Gueddari M. Field and laboratory study of nitrogen mineralization dynamics in four Tunisian soils[J]. Journal of African Earth Sciences, 2019, 154: 101-110. |
29 | Girsang S S, Correa T Q, Quilty J R, et al. Soil aeration and relationship to inorganic nitrogen during aerobic cultivation of irrigated rice on a consolidated land parcel[J]. Soil and Tillage Research, 2020, 202: 104647. |
30 | Lin Xiaodan, Yu Shen, Yang Dawen, et al. Discriminating surface soil inorganic nitrogen cycling under various land uses in a watershed with simulations of energy balanced temperature and slope introduced moisture[J]. Journal of Hydrology, 2020, 587: 124950. |
31 | Hu Zhonghao, Chang Shunli, Zhang Yutao, et al. Dynamic response of soil nitrogen to freeze-thaw processes in different cenotypes in the forests of the Tianshan Mountains[J]. Acta Ecologica Sinica, 2019, 39(2): 571-579. |
胡仲豪, 常顺利, 张毓涛, 等. 天山林区不同类型群落土壤氮素对冻融过程的动态响应[J]. 生态学报, 2019, 39(2): 571-579. | |
32 | Shi Wei, Wang Jingyan, Wei Youbo, et al. Effects of moisture and temperature on soil nitrogen mineralization of Cryptomeria fortunei plantations in rainy area of Western China[J]. Chinese Journal of Soil Science, 2014, 45(6): 1430-1436. |
石薇, 王景燕, 魏有波, 等. 水热条件对华西雨屏区柳杉人工林土壤氮矿化的影响[J]. 土壤通报, 2014, 45(6): 1430-1436. | |
33 | Sun Hui, Qin Jihong, Wu Yang. Freeze-thaw cycles and their impacts on ecological process: a review[J]. Soils, 2008, 40(4): 505-509. |
孙辉, 秦纪洪, 吴杨. 土壤冻融交替生态效应研究进展[J]. 土壤, 2008, 40(4): 505-509. | |
34 | Zhao Yuan, Zhou Wangming, Wang Shoule, et al. Effects of freezing-thawing on soil carbon and nitrogen mineralization in temperate forest ecosystems[J]. Chinese Journal of Ecology, 2017, 36(6): 1548-1554. |
赵媛, 周旺明, 王守乐, 等. 冻融对温带森林土壤碳、氮矿化作用的影响[J]. 生态学杂志, 2017, 36(6): 1548-1554. | |
35 | Yinghua Juan, Liu Yan, Tian Lulu, et al. Regulation effects of freezing-thawing cycle on farmland brown soil nitrogen transformation process[J]. Soils, 2015, 47(4): 647-652. |
隽英华, 刘艳, 田路路, 等. 冻融交替对农田棕壤氮素转化过程的调控效应[J]. 土壤, 2015, 47(4): 647-652. | |
36 | Zhou Wangming, Wang Jinda, Liu Jingshuang, et al. Effects of freezing and thawing on dissolved organic carbon and nitrogen pool and nitrogen mineralization in typical wetland soils from Sanjiang Plain, Heilongjiang, China[J]. Journal of Ecology and Rural Environment, 2008, 24(3): 1-6. |
周旺明, 王金达, 刘景双, 等. 冻融对湿地土壤可溶性碳、氮和氮矿化的影响[J]. 生态与农村环境学报, 2008, 24(3): 1-6. | |
37 | Wei Zhi, Jin Huijun, Zhang Jianming, et al. Study on the process of soil carbon and nitrogen mineralization in cold-temperate coniferous forests under freezing and thawing[J]. Scientia Sinica (Terrae), 2011, 41(1): 74-84. |
魏智, 金会军, 张建明, 等. 气候变化条件下东北地区多年冻土变化预测[J]. 中国科学: 地球科学, 2011, 41(1): 74-84. | |
38 | Luo Yachen, Lv Yuliang, Yang Hao, et al. Soil carbon and nitrogen mineralization in a Larix gmelinii forest during freeze-thaw cycles[J]. Ecology and Environmental Sciences, 2014, 23(11): 1769-1775. |
罗亚晨, 吕瑜良, 杨浩, 等. 冻融作用下寒温带针叶林土壤碳氮矿化过程研究[J]. 生态环境学报, 2014, 23(11): 1769-1775. | |
39 | Wang Jiaoyue, Han Yaopeng, Song Changchun, et al. Effects of freezing-thawing cycles on soil organic carbon mineralization in the peatland ecosystems from continuous permafrost zone, Great Hinggan Mountains[J]. Climate Change Research, 2018, 14(1): 59-66. |
王娇月, 韩耀鹏, 宋长春, 等. 冻融作用对大兴安岭多年冻土区泥炭地土壤有机碳矿化的影响研究[J]. 气候变化研究进展, 2018, 14(1): 59-66. | |
40 | Zhu Yanming, Huo Wenyi, Chen Dinggui. Trace element dispersion characteristics of peat in the Da Hingan Mountains and environmental significance[J]. Scientia Gelgraphica Sinica, 1997, 17(2): 63-67. |
朱颜明, 霍文毅, 陈定贵. 大兴安岭泥炭微量元素分布特征及其环境意义[J]. 地理科学, 1997, 17(2): 63-67. | |
41 | Chang Yihui, Mu Changcheng, Peng Wenhong, et al. Characteristics of greenhouse gas emissions from seven swamp types in the permafrost region of Daxing’ an Mountains, northeast China[J]. Acta Ecologica Sinica, 2020, 40(7): 2333-2346. |
常怡慧, 牟长城, 彭文宏, 等. 大兴安岭永久冻土区7种沼泽类型土壤温室气体排放特征[J]. 生态学报, 2020, 40(7): 2333-2346. | |
42 | Wang Yonghui, Liu Huiying, Chung H, et al. Non-growing-season soil respiration is controlled by freezing and thawing processes in the summer monsoon-dominated Tibetan alpine grassland[J]. Global Biogeochemical Cycles, 2014, 28(10): 1081-1095. |
43 | Wang Qi, Wangwang Lü, Li Bowen, et al. Annual ecosystem respiration is resistant to changes in freeze-thaw periods in semi-arid permafrost[J]. Global Change Biology, 2020, 26(4): 2630-2641. |
44 | Jiang Lei, Song Yanyu, Song Changchun, et al. Indoor simulation study on carbon and nitrogen contents and enzyme activities of soils in permafrost region in Greater Khingan Mountains[J]. Wetland Science, 2018, 16(3): 294-302. |
蒋磊, 宋艳宇, 宋长春, 等. 大兴安岭冻土区泥炭地土壤碳、氮含量和酶活性室内模拟研究[J]. 湿地科学, 2018, 16(3): 294-302. | |
45 | Groffman P, Driscoll C, Fahey T, et al. Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest[J]. 2001, 2001, 56(2): 191-213. |
46 | Li Yuan. The influence of hydrothermal conditions change on nitrogen transformation and enzyme activities in black soil in Northeast China[D]. Changchun: Northeast Normal University, 2015. |
李源. 东北黑土氮素转化和酶活性对水热条件变化的响应[D]. 长春: 东北师范大学, 2015. | |
47 | Xiao Ruihan, Man Xiuling, Ding Lingzhi. Soil nitrogen mineralization characteristics of the natural coniferous forest in northern Daxing’an Mountains, Northeast China[J]. Acta Ecologica Sinica, 2019, 39(8): 2762-2771. |
肖瑞晗, 满秀玲, 丁令智. 大兴安岭北部天然针叶林土壤氮矿化特征[J]. 生态学报, 2019, 39(8): 2762-2771. | |
48 | Li Zhijie, Yang Wanqin, Yue Kai, et al. Effects of temperature on soil nitrogen mineralization in three subalpine forests of western Sichuan, China[J]. Acta Ecologica Sinica, 2017, 37(12): 4045-4052. |
李志杰, 杨万勤, 岳楷, 等. 温度对川西亚高山3种森林土壤氮矿化的影响[J]. 生态学报, 2017, 37(12): 4045-4052. | |
49 | Lu Boquan, Zang Shuying, Sun Li. The effects of freezing-thawing process on soil active organic carbon and nitrogen mineralization in Daxing’ an Mountains forests[J]. Acta Scientiae Circumstantiae, 2019, 39(5): 1664-1672. |
鲁博权, 臧淑英, 孙丽. 冻融作用对大兴安岭典型森林土壤活性有机碳和氮矿化的影响[J]. 环境科学学报, 2019, 39(5): 1664-1672. | |
50 | Liu Mei, Ma Zhiliang. Effects of experimental warming on soil nitrogen transformation in alpine scrubland of eastern Qinghai-Tibet Plateau, China[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2045-2052. |
刘美, 马志良. 模拟增温对青藏高原东部高寒灌丛土壤氮转化的影响[J]. 应用生态学报, 2021, 32(6): 2045-2052. | |
51 | Zhou Wangming, Chen Hua, Zhou Li, et al. Effect of freezing-thawing on nitrogen mineralization in vegetation soils of four landscape zones of Changbai Mountain[J]. Annals of Forest Science, 2011, 68(5): 943-951. |
52 | Fierer N, Schimel J P, Holden P A. Variations in microbial community composition through two soil depth profiles[J]. Soil Biology and Biochemistry, 2003, 35(1): 167-176. |
53 | Zhou Wangming, Qin Shengjin, Liu Jingshuang, et al. Effects of temperature and freeze-thaw on soil nitrogen mineralization in typical Calamagrostis angustifolia wetlands in Sanjiang Plain[J]. Journal of Agro-Environment Science, 2011, 30(4): 806-811. |
周旺明, 秦胜金, 刘景双, 等. 沼泽湿地土壤氮矿化对温度变化及冻融的响应[J]. 农业环境科学学报, 2011, 30(4): 806-811. | |
54 | Gao Decai, Zhang Lei, Liu Jun, et al. Responses of terrestrial nitrogen pools and dynamics to different patterns of freeze-thaw cycle: A meta-analysis[J]. Global Change Biology, 2018, 24(6): 2377-2389. |
55 | Wang Fei, Man Xiuling, Duan Beixing. Characteristics of soil nitrogen mineralization in the main forest types in cold temperate zone during the spring freezing-thawing period[J]. Journal of Beijing Forestry University, 2020, 42(3): 14-23. |
王飞, 满秀玲, 段北星. 春季冻融期寒温带主要森林类型土壤氮矿化特征[J]. 北京林业大学学报, 2020, 42(3): 14-23. | |
56 | Ma Xiuyan, Jiang Lei, Song Yanyu, et al. Effects of temperature and moisture changes on functional gene abundance of soil nitrogen cycle in permafrost peatland[J]. Acta Ecologica Sinica, 2021, 41(17): 6707-6717. |
马秀艳, 蒋磊, 宋艳宇, 等. 温度和水分变化对冻土区泥炭地土壤氮循环功能基因丰度的影响[J]. 生态学报, 2021, 41(17): 6707-6717. | |
57 | Jia Guojing, Zhou Yongbin, Dai Limin, et al. Effect of freezing-thawing on the carbon and nitrogen mineralization in Changbai Mountain[J]. Ecology and Environmental Sciences, 2012, 21(4): 624-628. |
贾国晶, 周永斌, 代力民, 等. 冻融对长白山森林土壤碳氮矿化的影响[J]. 生态环境学报, 2012, 21(4): 624-628. | |
58 | Li Shengnan, Fan Zhiping, Li Fayun, et al. Responses of soil nitrogen transformation process to freezing-thawing cycle in a riparian zone under three different vegetation types[J]. Chinese Journal of Ecology, 2013, 32(6): 1391-1398. |
李胜男, 范志平, 李法云, 等. 河岸带不同植被类型土壤氮素转化过程对冻融交替的响应[J]. 生态学杂志, 2013, 32(6): 1391-1398. | |
59 | Xu Junjun. Effects of freezing and thawing alternation on soil nitrogen pool in the alpine meadow[D]. Ya’an: Sichuan Agricultural University, 2010. |
徐俊俊. 冻融交替对高寒草甸土壤氮素的影响[D]. 雅安: 四川农业大学, 2010. | |
60 | Ren Yibin, Ren Nanqi, Li Zhiqiang. Effects of freeze-thaw cycles on soil microbial carbon, nitrogen and nitrogen conversion in Xiaoxing’anling boreal wetland of China[J]. Journal of Harbin Engineering University, 2013, 34(4): 530-535. |
任伊滨, 任南琪, 李志强. 冻融对小兴安岭湿地土壤微生物碳、氮和氮转换的影响[J]. 哈尔滨工程大学学报, 2013, 34(4): 530-535. | |
61 | Guo Dongnan, Zang Shuying, Zhao Guangying, et al. Effect of freeze-thaw action on dissolved organic carbon and nitrogen mineralization of wetland soil in Xiaoxing’an Mountains[J]. Journal of Soil and Water Conservation, 2015, 29(5): 260-265. |
郭冬楠, 臧淑英, 赵光影, 等. 冻融作用对小兴安岭湿地土壤溶解性有机碳和氮素矿化的影响[J]. 水土保持学报, 2015, 29(5): 260-265. | |
62 | Amador J A, Görres J H, Savin M C. Role of soil water content in the carbon and nitrogen dynamics of Lumbricus terrestris L. burrow soil[J]. Applied Soil Ecology, 2005, 28(1): 15-22. |
63 | Davidson E A, Janssens I A, Luo Yiqi. On the variability of respiration in terrestrial ecosystems: moving beyond Q10 [J]. Global Change Biology, 2006, 12(2): 154-164. |
64 | Ma Xiaofei, Chu Xinzheng, Ma Qian. Soil enzyme activity and microbial biomass of Haloxylon ammodendron community under freeze-thaw action[J]. Arid Land Geography, 2015, 38(6): 1190-1201. |
马晓飞, 楚新正, 马倩. 艾比湖地区冻融作用对梭梭群落土壤酶活性及微生物数量的影响[J]. 干旱区地理, 2015, 38(6): 1190-1201. | |
65 | Ma Junjie, Li Ren, Liu Hongchao, et al. A review on the development of study on hydrothermal characteristics of active layer in permafrost areas in Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 195-204. |
马俊杰, 李韧, 刘宏超, 等. 青藏高原多年冻土区活动层水热特性研究进展[J]. 冰川冻土, 2020, 42(1): 195-204. | |
66 | Martin J F, Reddy K R. Interaction and spatial distribution of wetland nitrogen processes[J]. Ecological Modelling, 1997, 105(1): 1-21. |
67 | Freppaz M, Williams B L, Edwards A C, et al. Simulating soil freeze/thaw cycles typical of winter alpine conditions: implications for N and P availability[J]. Applied Soil Ecology, 2007, 35(1): 247-255. |
68 | Zhang Wei, Zhang Xudong, He Hongbo, et al. Research advances in soil nitrogen transformation as related to drying/wetting cycles[J]. Chinese Journal of Ecology, 2010, 29(4): 783-789. |
张威, 张旭东, 何红波, 等. 干湿交替条件下土壤氮素转化及其影响研究进展[J]. 生态学杂志, 2010, 29(4): 783-789. | |
69 | Jin Fengxin, Wenbo Lü, Zhang Yunhui. Discussion on the dependence of wetland and frozen soil in Daxinganling area[J]. Protection Forest Science and Technology, 2007(6): 69-71. |
金凤新, 吕文博, 张芸慧. 试论大兴安岭地区湿地与冻土的依存关系[J]. 防护林科技, 2007(6): 69-71. |
[1] | 杜二计, 杨斌, 谭昌海, 肖瑶, 刘广岳, 邹德富, 赵拥华, 吴晓东, 吴通华, 赵林, 胡国杰, 周华云, 李智斌, 汪易. 青藏高原唐古拉地区活动层厚度分布特征及其影响因素[J]. 冰川冻土, 2022, 44(2): 376-386. |
[2] | 刘文惠, 谢昌卫, 刘海瑞, 庞强强, 王武, 刘广岳, 杨雨昆, 王铭, 张琪. Stefan方程在土壤冻融过程模拟中的应用[J]. 冰川冻土, 2022, 44(1): 327-339. |
[3] | 李智斌, 赵林, 刘广岳, 邹德富, 汪凌霄, 杨斌, 杜二计, 胡国杰, 周华云, 王翀, 幸赞品, 赵建婷, 殷秀峰, 迟鸿飞, 谭昌海, 陈文. 冻结季沱沱河源多年冻土区活动层土壤水分含量分析[J]. 冰川冻土, 2022, 44(1): 56-68. |
[4] | 王兴, 王飞腾, 任贾文, 秦大河. 高山区雪堆储雪的实验和模拟计算[J]. 冰川冻土, 2021, 43(6): 1617-1627. |
[5] | 李仁杰,何菲,王旭,张延杰,杜婷,杨进财. 不同成桩工艺条件下冻结粉土中基桩承载性状试验研究[J]. 冰川冻土, 2021, 43(6): 1809-1817. |
[6] | 冯晓琳,张艳林,常晓丽. 大兴安岭湿地多年冻土区活动层水热特征分析[J]. 冰川冻土, 2021, 43(5): 1468-1479. |
[7] | 温理想,郭蒙,黄书博,于方冰,钟超,周粉粉. 大兴安岭北部多年冻土区植被对活动层厚度变化的响应[J]. 冰川冻土, 2021, 43(5): 1531-1541. |
[8] | 肖泽岸, 朱霖泽, 侯振荣, 董晓强. 含NaCl和Na2SO4双组分盐渍土的水盐相变温度研究[J]. 冰川冻土, 2021, 43(4): 1121-1129. |
[9] | 邹莉丽,徐姗姗,郑超刚,李生芮,连婉婧,商志远,张志刚,孔兴功,赵志军. 四川稻城海子山方枝柏树轮宽度与气候因子的响应关系研究[J]. 冰川冻土, 2021, 43(3): 917-927. |
[10] | 付子腾,吴青柏,DYCK Miles,何海龙. 一种新的土壤冻融特征曲线模型[J]. 冰川冻土, 2021, 43(2): 437-452. |
[11] | 李根, 李双洋, 董长松, 杨佳乐, 姜琪. 高寒隧道保温结构的优化设计研究[J]. 冰川冻土, 2021, 43(2): 510-522. |
[12] | 崔宏环, 刘卫涛, 张立群. 季节冻土区水泥改良路基土的温缩性能研究[J]. 冰川冻土, 2021, 43(1): 204-213. |
[13] | 赵海鹏, 吕明侠, 王一博, 杨文静, 刘鑫, 白炜. 青藏高原风火山流域坡面尺度活动层土壤水热时空变化特征[J]. 冰川冻土, 2020, 42(4): 1158-1168. |
[14] | 张向东, 任昆, 刘家顺. 不同冻结条件下辽西风积砂土动力参数试验研究[J]. 冰川冻土, 2020, 42(4): 1229-1237. |
[15] | 常晓丽, 帖利民, 金会军, 何瑞霞, 李晓英, 王永平. 大兴安岭东坡新林林区冻土变化特征[J]. 冰川冻土, 2020, 42(3): 823-833. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000