1 |
Mishra U, Hugelius G, Shelef E, et al. Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks[J]. Science Advances, 2021, 7(9): eaaz5236.
|
2 |
Drake T W, Wickland K P, Spencer R G M, et al. Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(45): 13946-13951.
|
3 |
Grosse G, Harden J, Turetsky M, et al. Vulnerability of high-latitude soil organic carbon in North America to disturbance[J]. Journal of Geophysical Research Atmospheres, 2011, 116: G00K06.
|
4 |
Bracho R, Natali S, Pegoraro E, et al. Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations[J]. Soil Biology and Biochemistry, 2016, 97: 1-14.
|
5 |
Sun Guangyou. Discussion on the symbiotic mechanisms of swamp with permafrost: taking Da-Xiao Hinggan Mountains as examples[J]. Journal of Glaciolgy and Geocryology, 2000, 22(4): 309-316.
|
|
孙广友. 试论沼泽与冻土的共生机理——以中国大小兴安岭地区为例[J]. 冰川冻土, 2000, 22(4): 309-316.
|
6 |
Yu Yanmin. Ecological environment of the wetland of Xinganling area and the countermeasures for its protection[J].Research of Environmental Sciences, 1995, 8(6): 12-16.
|
|
于砚民. 兴安岭地区湿地生态环境及其保护对策[J]. 环境科学研究, 1995, 8(6): 12-16.
|
7 |
Yu Ran, Kampschreur M J, van Loosdrecht M C M, et al. Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia[J]. Environmental Science & Technology, 2010, 44(4): 1313-1319.
|
8 |
Evans C D, Monteith D T, Cooper D M. Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts[J]. Environmental Pollution, 2005, 137(1): 55-71.
|
9 |
Zhao Guangying, Guo Dongnan, Jiang Shan, et al. Effects of freezing and thawing on soil active organic carbon in the Xiaoxing’an Mountain wetlands[J]. Acta Ecologica Sinica, 2017, 37(16): 5411-5417.
|
|
赵光影, 郭冬楠, 江姗, 等. 冻融作用对小兴安岭典型湿地土壤活性有机碳的影响[J]. 生态学报, 2017, 37(16): 5411-5417.
|
10 |
Thurman E M. Organic geochemistry of natural waters[M]. Dordrecht: Springer Netherlands, 1985.
|
11 |
Wang Qingkui, Wang Silong, Feng Zongwei, et al. Active soil organic matter and its relationship with soil quality[J]. Acta Ecologica Sinica, 2005, 25(3): 513-519.
|
|
王清奎, 汪思龙, 冯宗炜, 等. 土壤活性有机质及其与土壤质量的关系[J]. 生态学报, 2005, 25(3): 513-519.
|
12 |
Linn D M, Doran J W. Aerobic and anaerobic microbial populations in no-till and plowed soils[J]. Soil Science Society of America Journal, 1984, 48(4): 794-799.
|
13 |
Michalzik B, Matzner E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem[J]. European Journal of Soil Science, 1999, 50(4): 579-590.
|
14 |
Frey K E. Amplified carbon release from vast West Siberian peatlands by 2100[J]. Geophysical Research Letters, 2005, 32(9): L09401.
|
15 |
McGuire A D, Anderson L G, Christensen T R, et al. Sensitivity of the carbon cycle in the Arctic to climate change[J]. Ecological Monographs, 2009, 79(4): 523-555.
|
16 |
Zhao Lin, Cheng Guodong, Li Shuxun, et al. Freezing and melting process of permafrost active layer near Wudaoliang, Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2000, 45(11): 1205-1211.
|
|
赵林, 程国栋, 李述训, 等. 青藏高原五道梁附近多年冻土活动层冻结和融化过程[J]. 科学通报, 2000, 45(11): 1205-1211.
|
17 |
Zhao Qiang, Wu Conglin, Luo Pingan, et al. Variation and influencing factors of soil temperature and moisture during freezing and thawing period in a seasonal freezing agricultural area in Northeast China[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 986-995.
|
|
赵强, 吴从林, 罗平安, 等. 冻融期东北农田土壤温度和水分变化规律及影响因素分析[J]. 冰川冻土, 2020, 42(3): 986-995.
|
18 |
Liechty H O, Kuuseoks E, Mroz G D. Dissolved organic carbon in northern hardwood stands with differing acidic inputs and temperature regimes[J]. Journal of Environmental Quality, 1995, 24(5): 927-933.
|
19 |
Yuan Jie, Tian Kun, Xu Junping, et al. Effect of warming and doubling CO2 on soil DOC of cattail and scirpus communities in Dianchi Lake[J]. Journal of Southwest Forestry University, 2016, 36(5): 65-70.
|
|
袁杰, 田昆, 许俊萍, 等. 增温与倍增CO2对滇池香蒲和水葱湿地土壤可溶性碳的影响[J]. 西南林业大学学报, 2016, 36(5): 65-70.
|
20 |
Li Zhongpei, Zhang Taolin, Chen Biyun. Dynamics of soluble organic carbon and its relation to mineralization of soil organic carbon[J]. Acta Pedologica Sinica, 2004, 41(4): 544-552.
|
|
李忠佩, 张桃林, 陈碧云. 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J]. 土壤学报, 2004, 41(4): 544-552.
|
21 |
Cole L, Bardgett R D, Ineson P, et al. Relationships between enchytraeid worms (Oligochaeta), climate change, and the release of dissolved organic carbon from blanket peat in northern England[J]. Soil Biology and Biochemistry, 2002, 34(5): 599-607.
|
22 |
Moore T R, Paré D, Boutin R. Production of dissolved organic carbon in Canadian forest soils[J]. Ecosystems, 2008, 11(5): 740-751.
|
23 |
Waddington J M, Tóth K, Bourbonniere R. Dissolved organic carbon export from a cutover and restored peatland[J]. Hydrological Processes, 2008, 22(13): 2215-2224.
|
24 |
Schädel C, Bader M K F, Schuur E A G, et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils[J]. Nature Climate Change, 2016, 6(10): 950-953.
|
25 |
Du Hao, Zhang Chengfu, Cheng Yuqi, et al. Change characteristics of dissolved organic carbon (DOC) in natural forests of Greater Khingan Mountains region[J]. Research of Soil and Water Conservation, 2019, 26(6): 46-52.
|
|
杜浩, 张成福, 程宇琪, 等. 大兴安岭天然林不同林分溶解有机碳变化特征[J]. 水土保持研究, 2019, 26(6): 46-52.
|
26 |
Li Shuyang, Man Xiuling, Wei Hong. Dynamic characteristics of soil active organic carbon in Betula platyphalla forest and Larix gmelinii forest in Daxing’an Mountains[J]. Journal of Northeast Forestry University, 2018, 46(12): 64-70.
|
|
李书杨, 满秀玲, 魏红. 大兴安岭白桦林和兴安落叶松林土壤活性有机碳动态特征[J]. 东北林业大学学报, 2018, 46(12): 64-70.
|
27 |
Lu Boquan, Zang Shuying, Sun Li. The effects of freezing-thawing process on soil active organic carbon and nitrogen mineralization in Daxing’anling Mountain forests[J]. Acta Scientiae Circumstantiae, 2019, 39(5): 1664-1672.
|
|
鲁博权, 臧淑英, 孙丽. 冻融作用对大兴安岭典型森林土壤活性有机碳和氮矿化的影响[J]. 环境科学学报, 2019, 39(5): 1664-1672.
|
28 |
Chang Xiaoli, Jin Huijun, He Ruixia, et al. Review of permafrost monitoring in the northern Da Hinggan Mountains, Northeast China[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 93-100.
|
|
常晓丽, 金会军, 何瑞霞, 等. 大兴安岭北部多年冻土监测进展[J]. 冰川冻土, 2013, 35(1): 93-100.
|
29 |
Zhou Wangming, Wang Jinda, Liu Jingshuang, et al. Effects of freezing and thawing on dissolved organic carbon and nitrogen pool and nitrogen mineralization in typical wetland soils from Sanjiang Plain, Heilongjiang, China[J]. Journal of Ecology and Rural Environment, 2008, 24(3): 1-6.
|
|
周旺明, 王金达, 刘景双, 等. 冻融对湿地土壤可溶性碳、氮和氮矿化的影响[J]. 生态与农村环境学报, 2008, 24(3): 1-6.
|
30 |
Pokrovsky O S, Karlsson J, Giesler R. Freeze-thaw cycles of Arctic thaw ponds remove colloidal metals and generate low-molecular-weight organic matter[J]. Biogeochemistry, 2018, 137(3): 321-336.
|
31 |
Han Chenglong, Gu Yanjie, Kong Meng, et al. Responses of soil microorganisms, carbon and nitrogen to freeze-thaw cycles in diverse land-use types[J]. Applied Soil Ecology, 2018, 124: 211-217.
|
32 |
Xiao Lie, Zhang Yang, Li Peng, et al. Effects of freeze-thaw cycles on aggregate-associated organic carbon and glomalin-related soil protein in natural-succession grassland and Chinese pine forest on the Loess Plateau[J]. Geoderma, 2019, 334: 1-8.
|
33 |
Li Jing, Wu Huijun, Wu Xueping, et al. Impact of long-term conservation tillage on soil aggregate formation and aggregate organic carbon contents[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 378-386.
|
|
李景, 吴会军, 武雪萍, 等. 长期保护性耕作提高土壤大团聚体含量及团聚体有机碳的作用[J]. 植物营养与肥料学报, 2015, 21(2): 378-386.
|
34 |
Song Yang, Zou Yuanchun, Wang Guoping, et al. Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: a meta-analysis[J]. Soil Biology and Biochemistry, 2017, 109: 35-49.
|
35 |
Chapman P J, Reynolds B, Wheater H S. The seasonal variation in soil water acid neutralizing capacity in peaty podzols in Mid-Wales[J]. Water, Air, and Soil Pollution, 1995, 85(3): 1089-1094.
|
36 |
Herrmann A, Witter E. Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils[J]. Soil Biology and Biochemistry, 2002, 34(10): 1495-1505.
|
37 |
Grogan P, Michelsen A, Ambus P, et al. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-Arctic heath tundra mesocosms[J]. Soil Biology and Biochemistry, 2004, 36(4): 641-654.
|
38 |
Hentschel K, Borken W, Zuber T, et al. Effects of soil frost on nitrogen net mineralization, soil solution chemistry and seepage losses in a temperate forest soil[J]. Global Change Biology, 2009, 15(4): 825-836.
|
39 |
Jiang Lei, Song Yanyu, Song Changchun, et al. Indoor simulation study on carbon and nitrogen contents and enzyme activities of soils in permafrost region in Greater Khingan Mountains[J]. Wetland Science, 2018, 16(3): 294-302.
|
|
蒋磊, 宋艳宇, 宋长春, 等. 大兴安岭冻土区泥炭地土壤碳、氮含量和酶活性室内模拟研究[J]. 湿地科学, 2018, 16(3): 294-302.
|
40 |
Radke J K, Berry E C. Soil water and solute movement and bulk density changes in repacked soil columns as a result of freezing and thawing under field conditions[J]. Soil Science, 1998, 163(8): 611-624.
|
41 |
Zhang Tingshuang, Shi Sixue, Zhang Wen, et al. Environmental factors and dissolved organic carbon content in a Jinchuan peatland[J]. Acta Ecologica Sinica, 2016, 36(3): 160-165.
|
42 |
Lou Xuedong, Zhai Shengqiang, Kang Bing, et al. Seasonal dynamic characteristics of dissolved organic carbon in Zoige peatland and its impact factors[J]. Research of Environmental Sciences, 2014, 27(2): 157-163.
|
|
娄雪冬, 翟生强, 康冰, 等. 若尔盖泥炭地溶解有机碳季节变化特征及其影响因素[J]. 环境科学研究, 2014, 27(2): 157-163.
|
43 |
Lange M, Eisenhauer N, Sierra C A, et al. Plant diversity increases soil microbial activity and soil carbon storage[J]. Nature Communications, 2015, 6: 6707.
|
44 |
Cooper J M, Burton D, Daniell T J, et al. Carbon mineralization kinetics and soil biological characteristics as influenced by manure addition in soil incubated at a range of temperatures[J]. European Journal of Soil Biology, 2011, 47(6): 392-399.
|
45 |
Zhang Jinbo, Song Changchun, Yang Wenyan. Seasonal dynamics of dissolved organic carbon and its impact factors in the Doyeuxia augustifolia marsh soil[J]. Acta Scientiae Circumstantiae, 2005, 25(10): 1397-1402.
|
|
张金波, 宋长春, 杨文燕. 小叶章湿地表土水溶性有机碳季节动态变化及影响因素分析[J]. 环境科学学报, 2005, 25(10): 1397-1402.
|
46 |
Kalbitz K, Schwesig D, Schmerwitz J, et al. Changes in properties of soil-derived dissolved organic matter induced by biodegradation[J]. Soil Biology and Biochemistry, 2003, 35(8): 1129-1142.
|
47 |
Christ M J, David M B. Temperature and moisture effects on the production of dissolved organic carbon in a Spodosol[J]. Soil Biology and Biochemistry, 1996, 28(9): 1191-1199.
|
48 |
Liu Wei, Wang Shutao. Review of researches on dissolved organic matter in soil and its affecting factors[J]. Chinese Journal of Soil Science, 2011, 42(4): 997-1002.
|
|
刘微, 王树涛. 土壤中溶解性有机物及其影响因素研究进展[J]. 土壤通报, 2011, 42(4): 997-1002.
|
49 |
Ma Suhui, Mu Cuicui, Guo Hong, et al. Distribution features of permafrost organic carbon density on different vegetation types in the upper reaches of Heihe River, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2018, 40(3): 426-433.
|
|
马素辉, 牟翠翠, 郭红, 等. 祁连山黑河上游多年冻土区不同植被类型土壤有机碳密度分布特征[J]. 冰川冻土, 2018, 40(3): 426-433.
|
50 |
Baumann F, He Jinsheng, Schmidt K, et al. Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau[J]. Global Change Biology, 2009, 15(12): 3001-3017.
|
51 |
Sun Zhigao, Liu Jingshuang. Development in study of wetland litter decomposition and its responses to global change[J]. Acta Ecologica Sinica, 2007, 27(4): 1606-1618.
|
|
孙志高, 刘景双. 湿地枯落物分解及其对全球变化的响应[J]. 生态学报, 2007, 27(4): 1606-1618.
|
52 |
Merckx R, Brans K, Smolders E. Decomposition of dissolved organic carbon after soil drying and rewetting as an indicator of metal toxicity in soils[J]. Soil Biology and Biochemistry, 2001, 33(2): 235-240.
|
53 |
Yu Xiaofei, Zhang Yuxia, Zhao Hongmei, et al. Freeze-thaw effects on sorption/desorption of dissolved organic carbon in wetland soils[J]. Chinese Geographical Science, 2010, 20(3): 209-217.
|