冰川冻土 ›› 2022, Vol. 44 ›› Issue (2): 470-484.doi: 10.7522/j.issn.1000-0240.2022.0052
• 寒区工程与灾害 • 上一篇
周保1(), 魏刚2(
), 张永艳1, 魏赛拉加1, 蒋观利3
收稿日期:
2022-02-22
修回日期:
2022-03-18
出版日期:
2022-04-30
发布日期:
2022-06-10
通讯作者:
魏刚
E-mail:41448053@qq.com;158213989@qq.com
作者简介:
周保,正高级工程师,主要从事工程地质、地质灾害调查研究. E-mail: 41448053@qq.com
基金资助:
Bao ZHOU1(), Gang WEI2(
), Yongyan ZHANG1, Sailajia WEI1, Guanli JIANG3
Received:
2022-02-22
Revised:
2022-03-18
Online:
2022-04-30
Published:
2022-06-10
Contact:
Gang WEI
E-mail:41448053@qq.com;158213989@qq.com
摘要:
在多年冻土区,道路工程会对周边的多年冻土产生热影响,但不同地表条件下的多年冻土对道路热影响的反馈差异尚不完全清楚。本研究基于青藏公路沿线两处监测场地的多年冻土监测数据,研究了不同地表条件下青藏公路对多年冻土的热影响差异。结果表明,青藏公路对多年冻土的热影响因地表条件的不同而存在差异。与植被覆盖率较高的监测场地相比,在植被覆盖率较低的监测场地,其多年冻土年平均地温更高、多年冻土活动层厚度更大,且青藏公路对多年冻土的水平热影响范围也相对更大。此外,在植被覆盖率较低的监测场地最靠近坡脚的位置处,由于地表条件的不同,其浅层土壤更易受到外界扰动,导致该位置浅层土壤与外界的热交换特征迥异于其他监测位置,这可能也是导致两处监测场地多年冻土的热状态存在差异的原因。目前,青藏工程走廊内各线性工程密布,工程间的相互影响及其与多年冻土间的关系已成为必须考虑的问题。本研究工作对于青藏高原多年冻土区工程走廊内线性工程之间的合理间距设定,以及即将建设的青藏高速公路双向路基间的合理距离设计都可提供参考,以达到减少工程热扰动,保障工程安全运营的目的。
中图分类号:
周保, 魏刚, 张永艳, 魏赛拉加, 蒋观利. 不同地表条件下青藏公路对多年冻土的热影响差异研究[J]. 冰川冻土, 2022, 44(2): 470-484.
Bao ZHOU, Gang WEI, Yongyan ZHANG, Sailajia WEI, Guanli JIANG. Study on the diversities of thermal impacts of Qinghai-Tibet Highway on permafrost under different surface conditions[J]. Journal of Glaciology and Geocryology, 2022, 44(2): 470-484.
1 | Wang Shuangjie, Chen Jianbing, Zhang Jinzhao, et al. Development of highway constructing technology in the permafrost region on the Qinghai-Tibet Plateau[J]. Science in China Series E: Technological Sciences, 2009, 52(2): 497-506. |
2 | Cheng Guodong, He Ping. Linearity engineering in permafrost areas[J]. Journal of Glaciology and Geocryology, 2001, 23(3): 213-217. |
程国栋, 何平. 多年冻土地区线性工程建设[J]. 冰川冻土, 2001, 23(3): 213-217. | |
3 | Wang Shuangjie, Li Zhulong. Research on highway construction technology in the permafrost region of China[J]. Journal of Highway and Transportation Research and Development, 2008, 25(1): 1-9. |
汪双杰, 李祝龙. 中国多年冻土地区公路修筑技术研究[J]. 公路交通科技, 2008, 25(1): 1-9. | |
4 | Nelson F E, Lachenbruch A H, Woo M K, et al. Permafrost and changing climate[C]//Proceedings of the Sixth International Conference on Permafrost. Wushan, Guangzhou: South China University of Technology Press, 1993, 2: 987-1005. |
5 | Cheng G D, Wu T H. Responses of permafrost to climate change and their environmental significance, Qinghai‐Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface, 2007, 112: F02S03. |
6 | Ni J. A simulation of biomes on the Tibetan Plateau and their responses to global climate change[J]. Mountain Research and Development, 2000, 20(1): 80-89. |
7 | Nan Z, Li S, Cheng G. Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years[J]. Science in China Series D: Earth Sciences, 2005, 48(6): 797-804. |
8 | Brown J, Hinkel K M, Nelson F E. The circumpolar active layer monitoring (CALM) program: research designs and initial results[J]. Polar geography, 2000, 24(3): 166-258. |
9 | Nelson F E, Shiklomanov N I, Hinkel K M, et al. The circumpolar active layer monitoring (CALM) Workshop and THE CALM II Program[J]. Polar Geography, 2004, 28(4): 253-266. |
10 | Wang Qingzhi, Fang Jianhong, Chao Gang. Analysis of cooling effect of block-stone expressway embankment in warm temperature permafrost region[J]. Rock and Soil Mechanics, 2020, 41(1): 305-314. |
王青志, 房建宏, 晁刚. 高温冻土地区高等级公路片块石路基降温效果分析[J]. 岩土力学, 2020, 41(1): 305-314. | |
11 | Wu Qingbai, Cui Wei, Liu Yongzhi. The cooling effect of U-type crushed rock embankment on permafrost[J]. Journal of Glaciology and Geocryology, 2010, 32(3): 532-537. |
吴青柏, 崔巍, 刘永智. U型块石路基结构对多年冻土的降温作用[J]. 冰川冻土, 2010, 32(3): 532-537. | |
12 | Niu Fujun, Ma Wei, Lai Yuanming. Preliminary analysis on engineering effect of ventilation embankment at Beiluhe testing section of Qinghai-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22():2652-2658. |
牛富俊, 马巍, 赖远明. 青藏铁路北麓河试验段通风管路基工程效果初步分析[J]. 岩石力学与工程学报, 2003, 22(): 2652-2658. | |
13 | Song Zhengmin, Mu Yanhu, Ma Wei, et al. Characteristics and influence factors of wind speed in ventilation duct of ventilation duct embankment in high altitude permafrost regions[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 1111-1120. |
宋正民, 穆彦虎, 马巍, 等. 高海拔冻土区通风管路基管内风速及影响因素研究[J]. 冰川冻土, 2021, 43(4): 1111-1120. | |
14 | Hou Shuguang, Bian Jiang, Wang Shuangjie. Numerical simulation of thermal state of EPS insulation roadbed in permafrost region[J]. Journal of Nanjing University of Technology, 2007, 29(1): 27-31. |
侯曙光, 边疆, 汪双杰. 多年冻土区聚苯乙烯隔热公路路基温度场数值分析[J]. 南京工业大学学报(自然科学版), 2007, 29(1): 27-31. | |
15 | Zhang Junwei, Li Jinping. Thermal stability analysis of different type subgrades in permafrost regions[J]. Rock and Soil Mechanics, 2011, 32(1): 533-537. |
张军伟, 李金平. 多年冻土区不同路面材料路基热稳定性分析[J]. 岩土力学, 2011, 32(1): 533-537. | |
16 | Wang Qingzhi, Fang Jianhong, Chao Gang, et al. Influence of pavement type on thermal state of block-stone subgrade in permafrost region[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1087-1097. |
王青志, 房建宏, 晁刚, 等. 路面类型对多年冻土区片块石路基热状态的影响[J]. 冰川冻土, 2019, 41(5): 1087-1097. | |
17 | Zhao Liting, Xu Linxin, Gupta P K. Study on highway route selection in permafrost regions of the Qinghai-Tibet Plateau[J]. Subgrade Engineering, 2020(1): 20-24. |
赵立廷, 许林新, 戈普塔. 青藏高原多年冻土区高速公路选线研究[J]. 路基工程, 2020(1): 20-24. | |
18 | Wang Fuming, Zou Jiangshan, Xiao Laibing. Construction technology of highway subgrade in high latitude permafrost area[J]. Highway Engineering, 2014(12): 6-10. |
王福明, 邹江山, 肖来兵. 高纬度多年冻土地区公路路基施工技术[J]. 交通建设与管理, 2014(12): 6-10. | |
19 | Wu Q B, Cheng G D, Ma W, et al. Technical approaches on permafrost thermal stability for Qinghai-Tibet Railway[J]. Geomechanics and Geoengineering: An International Journal, 2006, 1(2): 119-127. |
20 | Yu W, Liu W, Chen L, et al. Evaluation of cooling effects of crushed rock under sand-filling and climate warming scenarios on the Tibet Plateau[J]. Applied Thermal Engineering, 2016, 92: 130-136. |
21 | Wang G S, Yu Q H, You Y H, et al. Problems and countermeasures in construction of transmission line projects in permafrost regions[J]. Sciences in Cold and Arid Regions, 2014, 6(5): 432-439. |
22 | Wang G X, Li Y S, Wu Q B, et al. Relationship between permafrost and vegetation in frozen soil region of Qinghai-Tibet Plateau and its impact on alpine ecosystems[J]. Science in China Series D: Earth Sciences, 2006, 36(8): 743-754. |
23 | Jorgenson M T, Racine C H, Walters J C, et al. Permafrost degradation and ecological changes associated with a warming climate in central Alaska[J]. Climatic Change, 2001, 48(4): 551-579. |
24 | Christensen T R, Johansson T, Åkerman H J, et al. Thawing sub‐arctic permafrost: effects on vegetation and methane emissions[J]. Geophysical Research Letters, 2004, 31(4): L04501. |
25 | Dingman S L, Koutz F R. Relations among vegetation, permafrost, and potential insolation in central Alaska[J]. Arctic and Alpine Research, 1974, 6(1): 37-47. |
26 | Roy‐Léveillée P, Burn C R, McDonald I D. Vegetation‐permafrost relations within the forest‐tundra ecotone near Old Crow, Northern Yukon, Canada[J]. Permafrost and Periglacial Processes, 2014, 25(2): 127-135. |
27 | Brown R J E. Influence of vegetation on permafrost[C]//First International Conference on Permafrost. Indiana, USA, 1963: 11-15. |
28 | Hinzman L D, Bettez N D, Bolton W R, et al. Evidence and implications of recent climate change in northern Alaska and other arctic regions[J]. Climatic Change, 2005, 72(3): 251-298. |
29 | Zhang Y, Munkhtsetseg E, Kadota T, et al. An observational study of ecohydrology of a sparse grassland at the edge of the Eurasian cryosphere in Mongolia[J]. Journal of Geophysical Research: Atmospheres, 2005, 110: D14103. |
30 | Wu Qingbai, Shen Yongping, Shi Bin. Relationship between frozen soil together with its water-heat process and ecological environment in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 25(3): 250-255. |
吴青柏, 沈永平, 施斌. 青藏高原冻土及水热过程与寒区生态环境的关系[J]. 冰川冻土, 2012, 25(3): 250-255. | |
31 | Hu Hongchang, Wang Genxu, Wang Yibo, et al. Response of soil heat-water processes to vegetation cover on the typical permafrost and seasonally frozen soil in the headwaters of the Yangtze and Yellow Rivers[J]. Chinese Science Bulletin, 2009, 54(2): 242-250. |
胡宏昌, 王根绪, 王一博, 等. 江河源区典型多年冻土和季节冻土区水热过程对植被盖度的响应[J]. 科学通报, 2009, 54(2): 242-250. | |
32 | Li Yuanshou, Wang Genxu, Zhao Lin, et al. Response of soil moisture in the permafrost active layer to the change of alpine meadow coverage on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 157-165. |
李元寿, 王根绪, 赵林, 等. 青藏高原多年冻土活动层土壤水分对高寒草甸覆盖变化的响应[J]. 冰川冻土, 2010, 32(1): 157-165. | |
33 | Wang G, Liu L, Liu G, et al. Impacts of grassland vegetation cover on the active‐layer thermal regime, northeast Qinghai‐Tibet Plateau, China[J]. Permafrost and Periglacial Processes, 2010, 21(4): 335-344. |
34 | Jiang Guanli, Wu Qingbai, Zhang Zhongqiong. Study on the differences of thermal-moisture dynamics in the active layer of permafrost in different alpine ecosystems on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 7-17. |
蒋观利, 吴青柏, 张中琼. 青藏高原不同高寒生态系统类型下多年冻土活动层水热过程差异研究[J]. 冰川冻土, 2018, 40(1):7-17. | |
35 | Gao Zeyong, Wang Yibo, Liu Guohua, et al. Response of soil moisture within the permafrost active layer to different alpine ecosystems[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 1002-1010. |
高泽永, 王一博, 刘国华, 等. 多年冻土区活动层土壤水分对不同高寒生态系统的响应[J]. 冰川冻土, 2014, 36(4): 1002-1010. | |
36 | Peng H, Ma W, Mu Y, et al. Degradation characteristics of permafrost under the effect of climate warming and engineering disturbance along the Qinghai-Tibet Highway[J]. Natural Hazards, 2015, 75(3): 2589-2605. |
37 | Niu F, Wu Q, Lai Y. Permafrost degradation in Qinghai-Tibet Plateau and thermal stability of the railway[J]. Journal of Engineering Geology, 2007, 15(1): 55-61. |
38 | Wang Shuangjie, Wu Qingbai, Liu Yongzhi. Change of thermal stability and thermal thawing sensitivity of frozen soil under asphalt pavement[J]. Journal of Highway and Transportation Research and Development, 2003, 20(4): 20-22. |
汪双杰, 吴青柏, 刘永智. 沥青路面下热稳定性和热融敏感性的变化[J]. 公路交通科技, 2003, 20(4): 20-22. | |
39 | Yin Y, Wu S, Zhao D, et al. Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan Plateau[J]. Journal of Geographical Sciences, 2013, 23(2): 195-207. |
40 | Li Shuxun, Wu Tonghua. The relationship between air temperature and ground temperature in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2005, 27(5): 627-631. |
李述训, 吴通华. 青藏高原地气温度之间的关系[J]. 冰川冻土, 2005, 27(5): 627-631. | |
41 | Li Xin, Cheng Guodong. Review on the interaction models between climatic system and frozen soil[J]. Journal of Glaciology and Geocryology, 2002, 24(3): 315-321. |
李新, 程国栋. 冻土-气候关系模型评述[J]. 冰川冻土, 2002, 24(3): 315-321. | |
42 | Yang Jianping, Yang Suiqiao, Li Man, et al. Vulnerability of frozen ground to climate change in China[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1436-1445. |
杨建平, 杨岁桥, 李曼, 等. 中国冻土对气候变化的脆弱性[J]. 冰川冻土, 2013, 35(6):1436-1445. | |
43 | Mao Xuesong, Hu Changshun, Hou Zhongjie. Laboratory large-scale test of temperature field in permafrost sub-grade[J]. Journal of Chang’an University (Natural Science Edition), 2004, 24(1): 30-34. |
毛雪松, 胡长顺, 侯仲杰. 冻土路基温度场室内足尺模型试验[J]. 长安大学学报(自然科学版), 2004, 24(1): 20-33. | |
44 | Liu Zhiqiang, Ma Wei, Zhou Guoqing, et al. Simulated experiment study on the temperature field of frozen subgrade modulated by horizontal pipes[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(11): 1827-1831. |
刘志强, 马巍, 周国庆, 等. 纵向布管调控冻土路基温度场的模拟试验研究[J]. 岩石力学与工程学报, 2005, 24(11): 1827-1831. | |
45 | Zhao Rui, Dong Lanfeng. Sensitivity analysis of thermal parameters to optimization for permafrost roadbed temperature field[J]. Highway, 2012(12): 72-76. |
赵瑞, 董兰凤. 冻土路基温度场参数优化敏感性分析[J]. 公路, 2012(12): 72-76. | |
46 | Liu Yongzhi, Wu Qingbai, Zhang Jianming, et al. Field experimental study on temperature of highway subgrade in permafrost regions of Qinghai-Tibet Plateau[J]. Highway, 2000(2): 5-8. |
刘永智, 吴青柏, 张建明, 等. 高原多年冻土地区公路路基温度场现场实验研究[J]. 公路, 2000(2): 5-8. | |
47 | Niu Fujun, Zhang Jianming, Zhang Zhao. Engineering geological characteristics and evaluations of permafrost in Beiluhe testing field of Qinghai-Tibetan Railway[J]. Journal of Glaciology and Geocryology, 2002, 24(3): 264-269. |
牛富俊, 张建明, 张钊. 青藏铁路北麓河试验段冻土工程地质特征及评价[J]. 冰川冻土, 2002, 24(3): 264-269. | |
48 | Luo Jing, Niu Fujun, Lin Zhanju, et al. Permafrost features around a representative thermokarst lake in Beiluhe on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1110-1117. |
罗京, 牛富俊, 林战举, 等. 青藏高原北麓河地区典型热融湖塘周边多年冻土特征研究[J]. 冰川冻土, 2012, 34(5): 1110-1117. | |
49 | Qin Yanhui, Wu Tonghua, Li Ren, et al. Applicability of ERA-Interim land surface temperature dataset to map the permafrost distribution over the Tibetan Plateau[J]. Plateau Meteorology, 2015, 37(6): 1534-1543. |
秦艳慧, 吴通华, 李韧, 等. ERA-Interim地表温度资料在青藏高原多年冻土区的适用性[J]. 高原气象, 2015, 34(3): 666-675. | |
50 | Jin Huijun, Sun Liping, Wang Shaoling, et al. Dual influences of local environmental variables on ground temperatures on the interior-eastern Qinghai-Tibet Plateau (Ⅰ): vegetation and snow cover[J]. Journal of Glaciology and Geocryology, 2008, 30(4): 535-545. |
金会军, 孙立平, 王绍令, 等. 青藏高原中, 东部局地因素对地温的双重影响(I): 植被和雪盖[J]. 冰川冻土, 2008, 30(4): 535-545. | |
51 | Wang Jiacheng, Wang Shaoling, Qiu Guoqing. Permafrost along the Qinghai-Xizang Highway[J]. Acta Geographica Sinica, 1979, 34(1): 18-32. |
王家澄, 王绍令, 邱国庆. 青藏公路沿线的多年冻土[J]. 地理学报, 1979, 34(1): 18-32. | |
52 | Wang X X, Liu X, Chen S H. Correlation analysis of water and heat fluxes with environmental variables over lawn in semi-arid area[J]. Journal of Basic Science and Engineering, 2008, 16(5): 770-777. |
53 | Graham W G, King K M. Fraction of net radiation utilized in evapotranspiration from a corn crop[J]. Soil Science Society of America Journal, 1961, 25(2): 158-160. |
54 | Cao Wei, Sheng Yu, Wu Jichun, et al. Spatial variability of permafrost soil-moisture on the slope of the Qinghai-Tibet Plateau[J]. Advances in Water Science, 2017, 28(1): 32-40. |
曹伟, 盛煜, 吴吉春, 等. 青藏高原坡面冻土土壤水分空间变异特性[J]. 水科学进展, 2017, 28(1): 32-40. | |
55 | Liu Lingjun, Zhang Hong, Luo Lan. Spatial heterogeneity of soil water of alpine area in eastern Qinghai-Tibet Plateau[J]. Journal of Wuhan University (Natural Science Edition), 2008, 54(4): 414-420. |
柳领君, 张宏, 罗岚. 青藏高原东缘高寒地区土壤水分的空间异质性[J]. 武汉大学学报(理学版), 2008, 54(4):414-420. | |
56 | Yang Xueting, Fan Jun, Ge Jiamin, et al. Soil physical and chemical properties and vegetation characteristics of different types of grassland in Qilian Mountains, China[J]. Chinese Journal of Applied Ecology, 2022, 33(4): 878-886. |
杨学亭, 樊军, 盖佳敏, 等. 祁连山不同类型草地的土壤理化性质与植被特征[J]. 应用生态学报, 2022, 33(4): 878-886. |
[1] | 尹国安, 牛富俊, 林战举, 罗京, 刘明浩. 青藏高原热喀斯特湖演化及其对多年冻土的热影响模型计算研究[J]. 冰川冻土, 2022, 44(2): 355-365. |
[2] | 杜二计, 杨斌, 谭昌海, 肖瑶, 刘广岳, 邹德富, 赵拥华, 吴晓东, 吴通华, 赵林, 胡国杰, 周华云, 李智斌, 汪易. 青藏高原唐古拉地区活动层厚度分布特征及其影响因素[J]. 冰川冻土, 2022, 44(2): 376-386. |
[3] | 焦亚青, 宋立全, 臧淑英, 孙超峰, 鲁博权. 大兴安岭多年冻土泥炭地无机氮动态对秋季冻融的响应[J]. 冰川冻土, 2022, 44(2): 387-401. |
[4] | 孙超峰, 宋立全, 臧淑英, 焦亚青, 鲁博权. 大兴安岭秋季冻结期土壤水热变化对多年冻土泥炭地可溶性有机碳的影响[J]. 冰川冻土, 2022, 44(2): 402-414. |
[5] | 卫丁, 赵廷虎, 穆彦虎, 刘富荣, 丁泽琨, 刘自成. 气候变暖背景下沱沱河盆地多年冻土与融区地温过程研究[J]. 冰川冻土, 2022, 44(2): 427-436. |
[6] | 刘志云, 钟振涛, 崔福庆, 陈建兵, 彭惠. 青藏工程走廊冻融土热扩散系数特性与预测模型研究[J]. 冰川冻土, 2022, 44(2): 458-469. |
[7] | 李艳, 金会军, 温智, 赵子龙, 金晓颖. 多年冻土区斜坡稳定性研究综述[J]. 冰川冻土, 2022, 44(1): 203-216. |
[8] | 孟雅丽, 段克勤, 尚溦, 李双双, 邢莉, 石培宏. 基于CMIP6模式数据的1961—2100年青藏高原地表气温时空变化分析[J]. 冰川冻土, 2022, 44(1): 24-33. |
[9] | 柴乐, 张威, 刘亮, 马瑞丰, 唐倩玉, 李亚鹏, 乔静茹. 青藏高原东南部他念他翁山全新世早中期冰进事件研究[J]. 冰川冻土, 2022, 44(1): 307-315. |
[10] | 张怡, 段克勤, 石培宏. 1979—2100年青藏高原夏季大气0 ℃层高度变化分析[J]. 冰川冻土, 2022, 44(1): 34-45. |
[11] | 达伟, 王书峰, 沈永平, 陈安安, 毛炜峄, 张伟. 1957—2019年昆仑山北麓车尔臣河流域水文情势及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 46-55. |
[12] | 李智斌, 赵林, 刘广岳, 邹德富, 汪凌霄, 杨斌, 杜二计, 胡国杰, 周华云, 王翀, 幸赞品, 赵建婷, 殷秀峰, 迟鸿飞, 谭昌海, 陈文. 冻结季沱沱河源多年冻土区活动层土壤水分含量分析[J]. 冰川冻土, 2022, 44(1): 56-68. |
[13] | 周华云, 刘广岳, 杨斌, 邹德富, 赵林, 杜二计, 谭昌海, 陈文, 杨朝磊, 文浪, 旺扎多吉, 张浔浔, 肖瑶, 胡国杰, 李智斌, 谢昌卫, 汪凌霄, 刘世博. 长江上游沱沱河源区多年冻土发育特征[J]. 冰川冻土, 2022, 44(1): 69-82. |
[14] | 刘广岳, 邹德富, 杨斌, 杜二计, 周华云, 肖瑶, 赵林, 谭昌海, 胡国杰, 庞强强, 王武, 孙哲, 朱小凡, 殷秀峰, 汪凌霄, 李智斌, 谢昌卫. 青藏高原腹地各拉丹冬南北坡多年冻土考察初步结果[J]. 冰川冻土, 2022, 44(1): 83-95. |
[15] | 罗京, 牛富俊, 林战举, 刘明浩, 尹国安, 高泽永. 青藏高原多年冻土区热融滑塌发育特征及规律[J]. 冰川冻土, 2022, 44(1): 96-105. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000