冰川冻土 ›› 2022, Vol. 44 ›› Issue (3): 753-761.doi: 10.7522/j.issn.1000-0240.2022.0074
收稿日期:
2021-12-30
修回日期:
2022-06-03
出版日期:
2022-06-25
发布日期:
2022-08-27
作者简介:
段克勤,教授,主要从事冰冻圈与全球变化研究. E-mail: kqduan@snnu.edu.cn
基金资助:
Keqin DUAN(), Peihong SHI, Jinping HE
Received:
2021-12-30
Revised:
2022-06-03
Online:
2022-06-25
Published:
2022-08-27
摘要:
在全球变暖背景下,亚洲高山区冰川正在加速消融退缩。从冰川的物理变化机制,数值模拟冰川变化的过程,是揭示冰川变化机理的关键,也是研究冰川对气候的响应以及预测冰川变化的重要途径,更是应对冰川变化引发水文、生态、和环境效应的重要前提。作为冰川变化研究的前沿方向和热点领域,数值模拟一直是山地冰川研究的核心任务,近年在对亚洲高山区冰川研究中进展迅速。本文首先简要介绍了对山地冰川进行数值模拟的基本原理和方法,然后简要回顾了近年来亚洲高山区冰川数值模拟的研究现状,最后基于目前的研究与认识,提出我国在冰川数值模拟研究的薄弱环节并进行了展望和设想。本文可为建立、发展冰川数值模型,尤其是亚洲高山区山地冰川数值模拟研究提供基础知识和参考。
中图分类号:
段克勤, 石培宏, 何锦屏. 山地冰川变化的数值模拟及其在亚洲高山区的应用[J]. 冰川冻土, 2022, 44(3): 753-761.
Keqin DUAN, Peihong SHI, Jinping HE. Numerical simulations of mountain glacial changes and its application in Asian High Mountains[J]. Journal of Glaciology and Geocryology, 2022, 44(3): 753-761.
1 | IPCC, 2021: Summary for policymakers[M]// Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on climate change. Cambridge University Press, 2021. |
2 | Zemp M, Huss M, Thibert E, et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016[J]. Nature, 2019, 568(7752): 382-386. |
3 | Yao Tandong. A comprehensive study of Water-Ecosystem-Human activities reveals unbalancing Asian Water Tower and accompanying potential risks[J]. Chinese Science Bulletin, 2019, 64(27): 2761-2762. |
姚檀栋. 青藏高原水-生态-人类活动考察研究揭示“亚洲水塔”的失衡及其各种潜在风险[J]. 科学通报, 2019, 64(27): 2761-2762. | |
4 | Yao Tandong, Wu Guangjian, Xu Baiqing, et al. Asian Water Tower change and its impacts[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1203-1209. |
姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1203-1209. | |
5 | Wang Shijin, Wen Jiahong. Characteristics, influence of cryosphere disaster and prospect of discipline development[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(4): 523-530. |
王世金, 温家洪. 冰冻圈灾害特征, 影响及其学科发展展望[J]. 中国科学院院刊, 2020, 35(4): 523-530. | |
6 | Hugonnet R, McNabb R, Berthier E, et al. Accelerated global glacier mass loss in the early twenty-first century[J]. Nature, 2021, 592(7856): 726-731. |
7 | Immerzeel W W, Lutz A F, Andrade M, et al. Importance and vulnerability of the world’s water towers[J]. Nature, 2020, 577(7790): 364-369. |
8 | Huss M, Hock R. Global-scale hydrological response to future glacier mass loss[J]. Nature Climate Change, 2018, 8(2): 135-140. |
9 | You Q, Wu T, Shen L, et al. Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system[J]. Earth-Science Reviews, 2020, 201: 103043. |
10 | Chen Deliang, Xu Baiqing, Yao Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(32): 3025-3035. |
陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去, 现在与未来[J]. 科学通报, 2015, 60(32): 3025-3035. | |
11 | Yao Tandong, Yu Wusheng, Wu Guangjian. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings[J]. Chinese Science Bulletin, 2019, 64(27): 2770-2782. |
姚檀栋, 余武生, 邬光剑, 等. 青藏高原及周边地区近期冰川状态失常与灾变风险[J]. 科学通报, 2019, 64(27): 2770-2782. | |
12 | Wang Ninglian, Yao Tandong, Xu Baiqing, et al. Spatiotemporal pattern, trend, and influence of glacier change in Tibetan Plateau and surroundings under global warming[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1220-1232. |
王宁练, 姚檀栋, 徐柏青, 等. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响[J]. 中国科学院院刊, 2019, 34(11): 1220-1232. | |
13 | Kraaijenbrink P D A, Bierkens M F P, Lutz A F, et al. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers[J]. Nature, 2017, 549(7671): 257-260. |
14 | Wang Yuzhe. Development of a thermomechanical glacier flow model and its applications[D]. Beijing: University of Chinese Academy of Sciences, 2018. |
王玉哲. 山地冰川热力耦合模型开发与应用[D]. 北京: 中国科学院大学, 2018. | |
15 | Guo W, Liu S, Xu J, et al. The second Chinese glacier inventory: data, methods and results[J]. Journal of Glaciology, 2015, 61(226): 357-372. |
16 | Yao T, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667. |
17 | Xie Zichu, Liu Chaohai. Introduction to glaciology[M]. Shanghai: Shanghai Popular Science Press, 2010. |
谢自楚, 刘潮海. 冰川学导论[M]. 上海: 上海科学普及出版社, 2010. | |
18 | Qin Dahe, Yao Tandong, Ding Yongjian, et al. Establishment and significance of the scientific system of cryospheric science[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(4): 393-406. |
秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学体系的建立及其意义[J]. 中国科学院院刊, 2020, 35(4): 393-406. | |
19 | Ding Yongjian, Zhang Shiqiang, Chen Rensheng. Cryospheric hydrology: decode the largest freshwater reservoir on earth[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(4): 414-424. |
丁永建, 张世强, 陈仁升. 冰冻圈水文学: 解密地球最大淡水库[J]. 中国科学院院刊, 2020, 35(4): 414-424. | |
20 | Li Zhongqin. Material balance and dynamic process simulation of mountain glaciers[M]. Beijing: Science Press, 2019. |
李忠勤. 山地冰川物质平衡和动力过程模拟[M]. 北京: 科学出版社, 2019. | |
21 | Jiang Xi, Wang Ninglian, He Jianqiao, et al. A distributed surface energy and mass balance model and its application to a mountain glacier in China[J]. Chinese Science Bulletin, 2010, 55(18): 1757-1765. |
蒋熹, 王宁练, 贺建桥, 等. 山地冰川表面分布式能量-物质平衡模型及其应用[J]. 科学通报, 2010, 55(18): 1757-1765. | |
22 | Duan Keqin, Yao Tandong, Wang Ninglian, et al. Numerical simulation of Urumch Glacier No.1 in the eastern Tianshan, central Asia from 2005 to 2070[J]. Chinese Science Bulletin, 2012, 57(36): 3511-3515. |
段克勤, 姚檀栋, 王宁练, 等. 天山乌鲁木齐河源1号冰川变化的数值模拟及其对气候变化的响应分析[J]. 科学通报, 2012, 57(36): 3511-3515. | |
23 | Chen Jizu, Qin Xiang, Wu Jinkui, et al. Simulating the energy and mass balances on the Laohugou Glacier No.12 in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 38-47. |
陈记祖, 秦翔, 吴锦奎, 等. 祁连山老虎沟12号冰川表面能量和物质平衡模拟[J]. 冰川冻土, 2014, 36(1): 38-47. | |
24 | Duan Keqin, Yao Tandong, Shi Peihong, et al. Simulation and prediction of equilibrium line altitude of glaciers in the eastern Tibetan Plateau[J]. Scientia Sinica Terrae, 2017, 47(1): 104-113. |
段克勤, 姚檀栋, 石培宏, 等. 青藏高原东部冰川平衡线高度的模拟及预测[J]. 中国科学: 地球科学, 2017, 47(1): 104-113. | |
25 | Zhang T, Xiao C, Colgan W, et al. Observed and modelled ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya[J]. Journal of Glaciology, 2013, 59(215): 438-448. |
26 | Li Y, Ding Y, Shangguan D, et al. Climate-driven acceleration of glacier mass loss on global and regional scales during 1961—2016[J]. Science China Earth Sciences, 2021, 64: 589-599. |
27 | Braithwaite R J, Zhang Y. Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model[J]. Journal of Glaciology, 2000, 46(152): 7-14. |
28 | Hock R. Temperature index melt modelling in mountain areas[J]. Journal of Hydrology, 2003, 282(1): 104-115. |
29 | Hock R. Glacier melt: a review of processes and their modelling[J]. Progress in Physical Geography, 2005, 29(3): 362-391. |
30 | Zhu M, Yao T, Yang W, et al. Reconstruction of the mass balance of Muztag Ata No. 15 Glacier, eastern Pamir, and its climatic drivers[J]. Journal of Glaciology, 2018, 64(244): 259-274. |
31 | Wang Sheng. Degree-day model and its application to the simulation of glacial mass balance and runoff in the typical river basin[D]. Beijing: University of Chinese Academy of Sciences, 2012. |
王盛. 度日模型在典型流域冰川物质平衡和融水径流模拟中的应用[D]. 北京: 中国科学院大学, 2012. | |
32 | Zhang Yong, Liu Shiyin. Progress of the application of degree-day model to study glaciers and snow cover[J]. Journal of Glaciology and Geocryology, 2006, 28(1): 101-107. |
张勇, 刘时银. 度日模型在冰川与积雪研究中的应用进展[J]. 冰川冻土, 2006, 28(1): 101-107. | |
33 | Andreassen L M, Van den Broeke M R, Giesen R H, et al. A 5 year record of surface energy and mass balance from the ablation zone of Storbreen, Norway[J]. Journal of Glaciology, 2008, 54(185): 245-258. |
34 | Huintjes E, Sauter T, Schröter B, et al. Evaluation of a coupled snow and energy balance model for Zhadang Glacier, Tibetan Plateau, using glaciological measurements and time-lapse photography[J]. Arctic, Antarctic, and Alpine Research, 2015, 47(3): 573-590. |
35 | Sauter T, Arndt A, Schneider C. COSIPY v1. 3-an open-source coupled snowpack and ice surface energy and mass balance model[J]. Geoscientific Model Development, 2020, 13(11): 5645-5662. |
36 | Lobkina V A. Recrystallization of snowpack at sites with different degrees of humidity[J]. Annals of Glaciology, 2012, 53(61): 27-30. |
37 | van Pelt W J J, Schuler T V, Pohjola V A, et al. Accelerating future mass loss of Svalbard glaciers from a multi-model ensemble[J]. Journal of Glaciology, 2021, 67(263): 485-499. |
38 | Kang Ersi. A parameterized energy balance model of glacier melting of the Tianshan mountain[J]. Acta Geographica Sinica, 1994, 49(5): 467-476. |
康尔泗. 天山冰川消融参数化能量平衡模型[J]. 地理学报, 1994, 49(5): 467-476. | |
39 | Yang Xingguo, Qin Dahe, Zhang Tingjun, et al. Seasonal characteristics of surface radiative fluxes on the East Rongbuk Glacier in the north slope of Mt. Qomolangma (Mt. Everest) region[J]. Acta Meteorologica Sinica, 2010, 68(1): 19-31. |
杨兴国, 秦大河, 张廷军, 等. 珠穆朗玛峰北坡绒布冰川表面辐射特征观测研究[J]. 气象学报, 2010, 68(1): 19-31. | |
40 | Jiang Xi, Wang Ninglian, Yang Shengpeng, et al. The surface energy balance on the Qiyi Glacier in Qilian Mountains during the ablation period[J]. Journal of Glaciology and Geocryology, 2010, 32(4): 686-695. |
蒋熹, 王宁练, 杨胜朋, 等. 祁连山七一冰川暖季能量平衡及小气候特征分析[J]. 冰川冻土, 2010, 32(4): 686-695. | |
41 | Zhu M, Yao T, Wei Y, et al. Energy- and mass-balance comparison between Zhadang and Parlung No. 4 glaciers on the Tibetan Plateau[J]. Journal of Glaciology, 2015, 61: 595-607. |
42 | Yang W, Guo X, Yao T, et al. Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier[J]. Journal of Geophysical Research: Atmospheres, 2011, 116: D14116. |
43 | Zhang Y, Enomoto H, Ohata T, et al. Glacier mass balance and its potential impacts in the Altai Mountains over the period 1990—2011[J]. Journal of Hydrology, 2017, 553: 662-677. |
44 | Wang S, Yao T, Tian L, et al. Glacier mass variation and its effect on surface runoff in the Beida River catchment during 1957—2013[J]. Journal of Glaciology, 2017, 63(239): 523-534. |
45 | Shi P, Duan K, Nicholson K N, et al. Modeling past and future variation of glaciers in the Dongkemadi Ice Field on central Tibetan Plateau from 1989 to 2050[J]. Arctic, Antarctic, and Alpine Research, 2020, 52(1): 191-209. |
46 | Aas K S, Dunse T, Collier E, et al. The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere-glacier mass balance model[J]. The Cryosphere, 2016, 10(3): 1089-1104. |
47 | Engelhardt M, Ramanathan A L, Eidhammer T, et al. Modelling 60 years of glacier mass balance and runoff for Chhota Shigri Glacier, western Himalaya, northern India[J]. Journal of Glaciology, 2017, 63(240): 618-628. |
48 | Hock R, Flowers G, Johannesson T. Glaciers in watershed and global hydrology preface[J]. Hydrological Processes, 2008, 22: 3887. |
49 | Marzeion B, Jarosch A H, Hofer M. Past and future sea-level change from the surface mass balance of glaciers[J]. The Cryosphere, 2012, 6(6): 1295-1322. |
50 | Radić V, Bliss A, Beedlow A C, et al. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models[J]. Climate Dynamics, 2014, 42(1): 37-58. |
51 | Huss M, Hock R. A new model for global glacier change and sea-level rise[J]. Frontiers in Earth Science, 2015, 3: 54. |
52 | Cuffey K M, Paterson W S B. The physics of glaciers[M]. USA: Academic Press, 2010. |
53 | Schäfer M, Le Meur E. Improvement of a 2-D SIA ice-flow model: application to Glacier de Saint-Sorlin, France[J]. Journal of Glaciology, 2007, 53(183): 713-722. |
54 | Oerlemans J. An attempt to simulate historic front variations of Nigardsbreen, Norway[J]. Theoretical and Applied Climatology, 1986, 37(3): 126-135. |
55 | Waddington E D, Clarke G K C. Stable-isotope pattern predicted in surge-type glaciers[J]. Canadian Journal of Earth Sciences, 1988, 25(5): 657-668. |
56 | Jóhannesson T, Raymond C, Waddington E D. Time-scale for adjustment of glaciers to changes in mass balance[J]. Journal of Glaciology, 1989, 35(121): 355-369. |
57 | Abe-Ouchi A. Ice sheet response to climatic changes: a modelling approach[D]. Tokyo, Japan: ETH Zurich, 1993. |
58 | MacAyeal D R. EISMINT: lessons in ice-sheet modeling[J]. Department of Geophysical Sciences, University of Chicago, Chicago, IL, 1997, 1832: 1839. |
59 | Jouvet G, Huss M. Future retreat of great Aletsch glacier[J]. Journal of Glaciology, 2019, 65(253): 869-872. |
60 | Budd W F, Jenssen D. The dynamics of the Antarctic ice sheet[J]. Annals of Glaciology, 1989, 12: 16-22. |
61 | Wang Chenghai, Cheng Rong, Zhao Wen, et al. Research progress on the glacial dynamics models[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 43-52. |
王澄海, 程蓉, 赵文, 等. 冰川动力学模式模型进展及研究[J]. 冰川冻土, 2020, 42(1): 43-52. | |
62 | Pattyn F, Perichon L, Aschwanden A, et al. Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP-HOM)[J]. The Cryosphere, 2008, 2(2): 95-108. |
63 | Wang Y, Zhang T, Xiao C, et al. A two-dimensional, higher-order, enthalpy-based thermomechanical ice flow model for mountain glaciers and its benchmark experiments[J]. Computers & Geosciences, 2020, 141: 104526. |
64 | Zhao L, Tian L, Zwinger T, et al. Numerical simulations of Gurenhekou glacier on the Tibetan Plateau[J]. Journal of Glaciology, 2014, 60(219): 71-82. |
65 | Wang Wenti, Liu Zongxiang. Analysis of the frequency response behaviour of the glacier No.1 at the Urumqi River headwaters, Tianshan[J]. Journal of Glaciology and Geocryology, 1984, 6(4): 13-24. |
王文悌, 刘宗香. 天山乌鲁木齐河源1号冰川频率响应特性的计算与分析[J]. 冰川冻土, 1984, 6(4): 13-24. | |
66 | Cao Meisheng, Meier M F. Calculation of glacier longitudinal sections under stable conditions: glacier No.1 at the headwater of the Urumqi River, Tianshan Mt, as an example[J]. Journal of Glaciology and Geocryology, 1987, 9(2): 131-138. |
曹梅盛, M.F.迈耶. 稳定状态下冰川纵向断面计算——以天山乌鲁木齐河源1号冰川为例[J]. 冰川冻土, 1987, 9(2): 131-138. | |
67 | Ye B, Ding Y, Liu F, et al. Responses of various-sized alpine glaciers and runoff to climatic change[J]. Journal of Glaciology, 2003, 49(164): 1-7. |
68 | Li Huilin. Glacier dynamic models and their applicability for the alpine glaciers in China[D]. Beijing: University of Chinese Academy of Sciences, 2010. |
李慧林. 中国山岳冰川动力学模拟研究——以乌鲁木齐河源1号冰川为例[D]. 北京: 中国科学院大学, 2010. | |
69 | Leng W, Ju L, Xie Y, et al. Finite element three-dimensional Stokes ice sheet dynamics model with enhanced local mass conservation[J]. Journal of Computational Physics, 2014, 274: 299-311. |
70 | Stocker T F, Qin D H, Plattner G K, et al. IPCC 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK: Cambridge University Press, 2013. |
71 | Raper S C B, Braithwaite R J. Low sea level rise projections from mountain glaciers and icecaps under global warming[J]. Nature, 2006, 439(7074): 311-313. |
72 | Huss M, Jouvet G, Farinotti D, et al. Future high-mountain hydrology: a new parameterization of glacier retreat[J]. Hydrology and Earth System Sciences, 2010, 14(5): 815-829. |
73 | Clarke G K C, Jarosch A H, Anslow F S, et al. Projected deglaciation of western Canada in the twenty-first century[J]. Nature Geoscience, 2015, 8(5): 372-377. |
74 | Zekollari H, Huss M, Farinotti D. Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble[J]. The Cryosphere, 2019, 13(4): 1125-1146. |
75 | Rounce D R, Hock R, Shean D E. Glacier mass change in High Mountain Asia through 2100 using the open-source python glacier evolution model (PyGEM)[J]. Frontiers in Earth Science, 2020, 7: 331. |
76 | Hock R, Bliss A, Marzeion B, et al. GlacierMIP-A model intercomparison of global-scale glacier mass-balance models and projections[J]. Journal of Glaciology. 2019, 65(251): 453-467. |
77 | Farinotti D. Asia’s glacier changes[J]. Nature Geoscience, 2017, 10(9): 621-622. |
78 | Shi Yafeng. Estimation of the water resources affected by climatic warming and glacier shrinkage before 2050 in West China[J]. Journal of Glaciology and Geocryology, 2001, 23(4): 333-341. |
施雅风. 2050年前气候变暖冰川萎缩对水资源影响情景预估[J]. 冰川冻土, 2001, 23(4): 333-341. | |
79 | Maussion F, Butenko A, Champollion N, et al. The open global glacier model (OGGM) v1.1[J]. Geoscientific Model Development, 2019, 12(3): 909-931. |
[1] | 车彦军, 陈丽花, 谷来磊, 张明军, 曹昀, 吴佳康, 赖彦怡. 东昆仑木孜塔格峰地区冰湖演变与冰川物质亏损[J]. 冰川冻土, 2023, 45(4): 1254-1265. |
[2] | 赵丹, 张志刚, 张起鹏. 1974—2020年海螺沟冰川变化遥感监测[J]. 冰川冻土, 2023, 45(4): 1276-1287. |
[3] | 任思宇, 姜亮, 翟胜强, 叶晓华, 郭江. 基于动力过程的冰湖溃决洪水侵蚀演化特征研究[J]. 冰川冻土, 2023, 45(4): 1300-1313. |
[4] | 张一新, 周建民, 桑文刚, 李震, 黄磊, 鲁安新. 山地冰川中流线自动提取方法研究[J]. 冰川冻土, 2023, 45(4): 1428-1436. |
[5] | 王冬勇, 邵博, 马玲, 齐吉琳, 彭丽云. 基于微极理论的冻结砂土应变局部化数值模拟[J]. 冰川冻土, 2023, 45(3): 1105-1115. |
[6] | 孙雯璇, 杜文涛, 陈记祖, 蒋友严, 徐志龙, 刘鹏枭, 王金牛, 贺建桥, 罗立辉, 康世昌. 祁连山中段摆浪河21号冰川区微气象特征及降水的环流驱动研究[J]. 冰川冻土, 2023, 45(3): 1128-1141. |
[7] | 秦彩霞, 刘时银, 吴坤鹏, 高永鹏, 潘兮然, 段仕美, 张晨扬, 张子凡. 基于延时摄影监测冰川表面运动过程的研究[J]. 冰川冻土, 2023, 45(3): 833-845. |
[8] | 蔡佳欣, 何昱君, 王晓文, 刘国祥. 联合时序InSAR和光学遥感解译的大雪山南段石冰川编目与分布特征分析[J]. 冰川冻土, 2023, 45(2): 774-785. |
[9] | 王冰泉, 冉有华. 基于机器学习的第三极季节冻土最大冻结深度未来变化预测[J]. 冰川冻土, 2023, 45(2): 798-807. |
[10] | 赵玉娇, 高坛光, 张玉兰, 康世昌. 典型冰冻圈区域河流黑碳研究进展[J]. 冰川冻土, 2023, 45(2): 327-340. |
[11] | 周宇, 李国玉, 马巍, 金会军, 陈敦, 毛云程, 杜青松. 石冰川形成机制、运动特征及水文效应研究进展[J]. 冰川冻土, 2023, 45(2): 409-422. |
[12] | 马致远, 蒋宗立, 刘时银, 上官冬辉, 王振峰, 张勇, 魏俊锋. 阿拉斯加特纳冰川近期跃动特征分析[J]. 冰川冻土, 2023, 45(2): 456-467. |
[13] | 郭万钦, 上官冬辉, 蒋宗立, 刘时银, 康世昌, 魏俊锋, 郭小军, 陈立群. 阿尼玛卿山冰川跃动基本特征研究[J]. 冰川冻土, 2023, 45(2): 480-496. |
[14] | 赵卫博, 李忠勤, 牟建新, 李宏亮, 杨淑静, 徐春海. 基于OGGM模型的萨吾尔山冰川面积和储量预估[J]. 冰川冻土, 2023, 45(2): 497-508. |
[15] | 唐文君, 黄杰, 康世昌, 马明, 张强弓, 郭军明, 孙学军. 冰冻圈甲基汞研究进展[J]. 冰川冻土, 2023, 45(1): 80-93. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000