1 |
Fox-Kemper B, Hewitt H T, Xiao C, et al. Ocean, cryosphere and sea level change[M]// Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2021.
|
2 |
Rignot E, Mouginot J, Scheuchl B, et al. Inaugural article: four decades of Antarctic Ice Sheet mass balance from 1979—2017[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(4): 1095-1103.
|
3 |
Shen Q, Wang H, Shum C, et al. Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East Antarctica[J]. Scientific reports, 2018, 8(1): 1-8.
|
4 |
Seroussi H, Nowicki S, Payne A, et al. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic Ice Sheet evolution over the 21st century[J]. The Cryosphere, 2020, 14(9): 3033-3070.
|
5 |
Wang Y, Zhang T, Xiao C, et al. A two-dimensional, higher-order, enthalpy-based thermomechanical ice flow model for mountain glaciers and its benchmark experiments[J]. Computers & Geosciences, 2020, 141: 104526.
|
6 |
Zhang H, Ju L, Gunzburger M, et al. Coupled models and parallel simulations for three-dimensional Full-Stokes ice sheet modeling[J]. Numerical Mathematics: Theory, Methods and Application, 2011, 3: 396-418.
|
7 |
Leng W, Ju L, Gunzburger M, et al. A parallel high-order accurate finite element nonlinear Stokes ice sheet model and benchmark experiments[J]. Journal of Geophysical Research: Earth Surface, 2012, 117: F01001.
|
8 |
Leng W, Ju L, Gunzburger M, et al. Manufactured solutions and the verification of three-dimensional Stokes ice-sheet models[J]. The Cryosphere, 2013(7): 19-29.
|
9 |
Leng W, Ju L, Gunzburger M, et al. A parallel computational model for three-dimensional, thermo-mechanical Stokes flow simulations of glaciers and ice sheets[J]. Communications in Computational Physics, 2014, 16(4): 1056-1080.
|
10 |
Leng W, Ju L, Xie Y, et al. Finite element three dimensional Stokes ice sheet dynamics model with enhanced local mass conservation[J]. Journal of Computational Physics, 2014, 274: 299-311.
|
11 |
Zhang T, Price S, Ju L, et al. A comparison of two Stokes ice sheet models applied to the Marine Ice Sheet Model Intercomparison Project for plan view models (MISMIP3d)[J]. The Cryosphere, 2017, 11, 179-190.
|
12 |
Bell R, Ferraccioli F, Creyts T, et al. Widespread persistent thickening of the east Antarctic Ice Sheet by freezing from the base[J]. Science, 2011, 331(6024): 1592-1595.
|
13 |
Siegert M, Ross N, Le Brocq A. Recent advances in understanding Antarctic subglacial lakes and hydrology[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2059): 20140306.
|
14 |
Tang Xueyuan, Zhang Zhanhai, Sun Bo. Progress and prospect in numerical modelling of the Antarctic Ice Sheet[J]. Chinese journal of polar research, 2006, 18(4): 290-300.
|
|
唐学远, 张占海, 孙波. 南极冰盖数值模拟研究进展与展望[J]. 极地研究, 2006, 18(4): 290-300.
|
15 |
Tang Xueyuan, Sun Bo, Li Yuansheng, et al. Some recent progress of Antarctic Ice Sheet research[J]. Advances in Earth Science, 2009, 24(11): 1210-1218.
|
|
唐学远, 孙波, 李院生, 等. 南极冰盖研究最新进展[J]. 地球科学进展, 2009, 24(11): 1210-1218.
|
16 |
Greve R, Blatter H. Dynamics of Ice Sheets and Glaciers[M]. Springer Science & Business Media, Berlin, Germany, 2009.
|
17 |
Schoof C, Hindmarsh R. Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models[J]. Quarterly Journal of Mechanics and Applied Mathematics, 2010, 63(1): 73-114.
|
18 |
Hulbe C and MacAyeal D R. A new numerical model of coupled inland ice sheet, ice stream, and ice shelf flow and its application to the West Antarctic Ice Sheet[J]. Journal of Geophysical Research, 1999, 104(B11): 25349-25366.
|
19 |
Pollard D and DeConto R M. Description of a hybrid ice sheet shelf model, and application to Antarctica[J]. Geoscientific Model Development, 2012, 5: 1273-1295.
|
20 |
Pattyn F. Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0)[J]. The Cryosphere, 2017, 11: 1851-1878.
|
21 |
Gillet-Chaulet F, Gagliardini O, Seddik H, et al. Greenland Ice Sheet contribution to sea-level rise from a new-generation ice-sheet model[J]. The Cryosphere, 2012, 6: 1561-1576.
|
22 |
Cornford S L, Martin D F, Payne A J, et al. Century scale simulations of the response of the West Antarctic Ice Sheet to a warming climate[J]. The Cryosphere, 2015, 9: 1579-1600.
|
23 |
Nicholls K, Corr H, Stewart C. A ground-based radar for measuring vertical strain rates and time-varying basal melt rates in ice sheets and shelves[J]. Journal of Glaciology, 2015, 61(230): 1079-1087.
|
24 |
Zhao C, Gladstone R M, Warner R C, et al. Basal friction of Fleming Glacier, Antarctica-Part 1: sensitivity of inversion to temperature and bedrock uncertainty[J]. The Cryosphere, 2018, 12(8): 2637-2652.
|
25 |
Gong Y, Zwinger T, Cornford S, et al. Importance of basal boundary conditions in transient simulations: case study of a surging marine-terminating glacier on Austfonna, Svalbard[J]. Journal of Glaciology, 2016, 63(237): 106-117.
|
26 |
Martin M A, Winkelmann R, Haseloff M, et al. The Potsdam Parallel Ice Sheet Model (PISM-PIK)–Part 2: dynamic equilibrium simulation of the Antarctic Ice Sheet[J]. The Cryosphere, 2011, 5: 727-740.
|
27 |
DeConto R M, Pollard D. Contribution of Antarctica to past and future sea-level rise[J]. Nature, 2016, 531: 591-597.
|
28 |
Goelzer H, Nowicki S, Payne A. The future sea-level contribution of the Greenland Ice Sheet: a multi-model ensemble study of ISMIP6[J]. The Cryosphere, 2020, 14(9): 3071-3096.
|
29 |
Goelzer H, Nowicki S, Edwards T, et al. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison[J]. The Cryosphere, 2018, 12: 1433-1460.
|
30 |
Seroussi H, Nowicki S, Simon E, et al. initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6[J]. The Cryosphere, 2019, 13(5): 1441-1471.
|
31 |
Tang Xueyuan, Sun Bo, Li Yuansheng, et al. GLIMMER Antarctic Ice Sheet model, an experimental research of moving boundary condition[J]. Journal of Glaciology and Geocryology, 2007, 29(6): 905-913.
|
|
唐学远, 孙波, 张占海, 等. 南极冰盖GLIMMER模式移动边界试验研究[J]. 冰川冻土, 2007, 29(6): 905-913.
|
32 |
Tang Xueyuan, Sun Bo, Li Yuansheng, et al. GLIMMER Antarctic Ice Sheet model, model simplification of the two-dimensional ice stream[J]. Progress in Natural Science, 2007, 17(4): 480-487.
|
|
唐学远, 张占海, 孙波, 等. 南极冰盖GLIMMER模式试验及其对二维冰流情形的模型简化[J]. 自然科学进展, 2007, 17(4): 480-487.
|
33 |
Sun Bo, Siegert M, Mudd S, et al. The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet[J]. Nature, 2009, 459(7247): 690-693.
|
34 |
Cui X, Jeofry H, Greenbaum J, et al. Bed topography of Princess Elizabeth Land in East Antarctica[J]. Earth System Science Data, 2020, 12(4): 2765-2774.
|
35 |
Tang Xueyuan, Sun Bo, Li Yuansheng, et al. Review of the glaciological research progress and future development of deep ice core plan at Dome A, East Antarctica[J]. Chinses Journal of Polar Research, 2012, 24(1): 77-86.
|
|
唐学远 孙波, 李院生, 等. 冰穹A冰川学研究进展及深冰芯计划展望[J]. 极地研究, 2012, 24(1): 77-86.
|
36 |
Sun B, Moore J, Zwinger T, et al. How old is the ice beneath Dome A, Antarctica?[J]. The Cryosphere, 2014, 8(3): 1121-1128.
|
37 |
Zhao L, Moore J, Sun Bo, et al. Where is the 1-million-year-old ice at Dome A?[J]. The Cryosphere, 2018, 12(5): 1651-1663.
|
38 |
Wang B, Sun B, Martin C, et al. Summit of the East Antarctic Ice Sheet underlain by thick ice-crystal fabric layers linked to glacial-interglacial environmental change[J]. Geological Society, London, Special Publications, 2018, 461(1): 131-143.
|
39 |
Wang T, Sun B, Tang X, et al. Spatio-temporal variability of past accumulation rates inferred from isochronous layers at Dome A, East Antarctica[J]. Annals of Glaciology, 2016, 57(73): 87-93.
|
40 |
Zhang Liangpu, Tang Xueyuan, Yang Shuhu, et al. Numerical simulations of east Antarctic Ice Sheet based on the Elmer/Ice model[J]. Chinese Journal of Polar Research, 2017, 29(3): 390-398.
|
|
张良甫, 唐学远, 杨树瑚, 等. 基于Elmer/Ice冰盖模式的南极Gamburtsev山脉Lambert冰流区域的数值模拟研究[J]. 极地研究, 2017, 29(3): 390-398.
|
41 |
Tang X, Guo J, Dou Y, et al. Glaciological and meteorological conditions at the Chinese Taishan Station, East Antarctica[J]. Frontiers in Earth Science, 2020, 8: 250.
|
42 |
Liu C, Wang Z, Cheng C, et al. Modeling modified Circumpolar Deep Water intrusions onto the Prydz Bay continental shelf, East Antarctica[J]. Journal of Geophysical Research: Oceans, 2017, 122(7): 5198-5217.
|
43 |
Liu C, Wang Z, Cheng C, et al. On the modified Circumpolar Deep Water upwelling over the Four Ladies Bank in Prydz Bay, East Antarctica[J]. Journal of Geophysical Research: Oceans, 2018, 123(11): 7819-7838.
|
44 |
Cheng C, Jenkins A, Wang Z, et al. Modeling the vertical structure of the ice shelf-ocean boundary current under supercooled condition with suspended frazil ice processes: a case study underneath the Amery Ice Shelf, East Antarctica[J]. Ocean Modelling, 2020, 156: 101712.
|
45 |
Ji Qingyuan, Wang Bangbing, Sun Bo. Applicability PISM for velocity analysis of the Amery ice shelf, East Antarctica[J]. Chinese journal of Polar Research, 2015, 27(3): 229-236.
|
|
季青原, 王帮兵, 孙波. PISM冰盖模式对Amery冰架流速场模拟的适用性[J]. 极地研究, 2015, 27(3): 229-236.
|
46 |
Li T, Liu Y, Cheng X. Recent and imminent calving events do little to impair Amery ice shelf's stability[J]. Acta Oceanologica Sinica, 2020, 39(5): 168-170.
|
47 |
Li Teng, Chen Zhuoqi, Li Huilin, et al. A new-generation ice flow model Úa and its application in Amery Ice Shelf, Antarctica[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 254-264.
|
|
李腾, 陈卓奇, 李慧林, 等. 新一代冰流模式乌阿及其在南极埃默里冰架的应用[J]. 冰川冻土, 2020, 42(1): 254-264.
|
48 |
Sun S, Cornford S, Gwyther D, et al. Impact of ocean forcing on the Aurora Basin in the 21st and 22nd centuries[J]. Annals of Glaciology, 2016, 57(73): 79-86.
|
49 |
Yan Q, Zhang Z, Gao Y, et al. Sensitivity of the modeled present-day Greenland Ice Sheet to climatic forcing and spin-up methods and its influence on future sea level projections[J]. Journal of Geophysical Research Earth Surface, 2013, 118(4): 2174-2189.
|
50 |
Smith L, Yang Kang, Pitcher L, et al. Direct measurements of meltwater runoff on the Greenland Ice Sheet surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(50): E10622-E10631.
|
51 |
Moore J C, Yue C, Zhao L, et al. Greenland Ice Sheet response to stratospheric aerosol injection geoengineering[J]. Earth’s Future, 2019, 7.
|
52 |
Yue C, Zhao L, Wolovick M, et al. Greenland Ice Sheet surface runoff projections to 2200 using degree-day methods[J]. Atmosphere, 2021, 12(12): 1569.
|
53 |
Guo X, Zhao L, Gladstone R, et al. Simulated retreat of Jakobshavn Isbræ during the 21st century[J]. The Cryosphere, 2019, 13(11): 3139-3153.
|
54 |
Ai S, Ding X, An J, et al. Discovery of the fastest ice flow along the central flow line of Austre Lovénbreen, a poly-thermal valley glacier in Svalbard[J]. Remote Sensing, 2019, 11(12): 1488.
|
55 |
Ai Songtao, Yan Boya, Wang Zemin, et al. Projection of long-term changes of mountain glacier based on GIS grid operation method[J]. Polar Research, 2019, 31(3): 267-275.
|
|
艾松涛, 严博雅, 王泽民, 等. 基于GIS栅格操作方法模拟山地冰川长期变化[J]. 极地研究, 2019, 31(3): 267-275.
|
56 |
Wang Z, Yan B, Ai S, et al. Quantitative analysis of Arctic ice flow acceleration with increasing temperature[J]. Acta Oceanologica Sinica, 2021, 40(1): 22-32.
|
57 |
Ai S, Yan B, Wang Z, Yan M. A decadal record of inter-annual surface ice flow from Pedersenbreen, Svalbard (2005-15)[J]. Polar Science, 2019, 22: 100485.
|
58 |
Wang Z, Lin G, Ai S. How long will an Arctic mountain glacier survive? A case study of Austre Lovénbreen, Svalbard[J]. Polar Research, 2019, 38: 3519.
|
59 |
Yue C, Schmidt L, Zhao L, et al. Insensitivity of mass loss of Icelandic Vatnajökull ice cap to solar geoengineering[J]. The Cryosphere Discussions, 2021: 1-20.
|
60 |
Xiao Cunde, Chen Zhuoqi, Jiang Liming, et al. A study of monitoring, simulation and climate impact of Greenland Ice Sheet[J]. Advances in Earth Science, 2019, 34(8): 781-786.
|
|
效存德, 陈卓奇, 江利明, 等. 格陵兰冰盖监测、模拟及气候影响研究[J]. 地球科学进展, 2019, 34(8): 781-786.
|
61 |
Huybrechts P, Janssens I, Poncin C, et al. The response of the Greenland Ice Sheet to climate changes in the 21st century by interactive coupling of an AOGCM with a thermomechanical ice-sheet model[J]. Annual Glaciology, 2002, 35: 409-415.
|
62 |
Helsen M M, van de Wal R S W, van den Broeke M R, et al. Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice Sheet[J]. The Cryosphere, 2012, 6: 255-272.
|
63 |
Vizcaino M, Mikolajewicz U, Ziemen F, et al. Coupled simulations of Greenland Ice Sheet and climate change up to A.D. 2300[J]. Geophysical Research Letters, 2015, 42, 3927-3935.
|
64 |
Le clec’h S, Charbit S, Quiquet A, et al. Assessment of the Greenland Ice Sheet-atmosphere feedbacks for the next century with a regional atmospheric model coupled to an ice sheet model[J]. The Cryosphere, 2019, 13: 373-395.
|
65 |
Seroussi H, Nakayama Y, Larour E, et al. Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation[J]. Geophysical Research Letters, 2017, 44: 6191-6199.
|
66 |
Beckmann J, Perrette M, Beyer S, et al. Modeling the response of Greenland outlet glaciers to global warming using a coupled flow line-plume model[J]. The Cryosphere, 2019, 13, 2281-2301.
|
67 |
Favier L, Jourdain N C, Jenkins A, et al. Assessment of sub-shelf melting parameterisations using the ocean-ice-sheet coupled model NEMO (v3.6)–Elmer/Ice (v8.3)[J]. Geoscientific Model Development, 2019, 12: 2255-2283.
|