冰川冻土 ›› 2022, Vol. 44 ›› Issue (3): 885-899.doi: 10.7522/j.issn.1000-0240.2022.0085
收稿日期:
2022-03-23
修回日期:
2022-05-21
出版日期:
2022-06-25
发布日期:
2022-08-27
通讯作者:
王宁练
E-mail:sshou341@163.com;nlwang@nwu.edu.cn
作者简介:
侯姗姗,硕士研究生,主要从事冰川变化与气候变化研究. E-mail: sshou341@163.com
基金资助:
Shanshan HOU1,2(), Ninglian WANG1,2,3(
), Zhijie LI1,2
Received:
2022-03-23
Revised:
2022-05-21
Online:
2022-06-25
Published:
2022-08-27
Contact:
Ninglian WANG
E-mail:sshou341@163.com;nlwang@nwu.edu.cn
摘要:
冰川融水是高加索重要的淡水资源,对区域农业灌溉、水利发电等具有重要意义。本文基于Landsat影像和Sentinel-1影像对的相干系数图,结合GLIMS冰川编目以及WGMS冰川物质平衡资料,研究了1960—2020年高加索山地冰川变化的时空格局。研究结果表明,2020年高加索山共分布有冰川1 912条,总面积(1 087.36±66.44) km2。1960—2020年冰川面积共计萎缩(587.36±98.66) km2[(35.07±5.89)%],年均萎缩率达到(0.58±0.10)%·a-1。1960—1986年、1986—2000年、2000—2020年高加索冰川的面积萎缩率分别为(0.44±0.20)%·a-1、(0.66±0.77)%·a-1和(0.96±0.31)%·a-1,表明近60年以来高加索冰川处于加速退缩状态。对物质平衡资料的分析结果显示,近60年来高加索山脉的Djankuat和Garabashi冰川均处于强烈的负平衡状态,并在2000年后物质亏损明显加速。对气候资料的分析结果则表明气温的加速上升是近几十年来高加索山地冰川加速退缩的主要原因。
中图分类号:
侯姗姗, 王宁练, 李志杰. 1960—2020年高加索山地冰川变化研究[J]. 冰川冻土, 2022, 44(3): 885-899.
Shanshan HOU, Ninglian WANG, Zhijie LI. Glacier variations in the Caucasus Mountains from 1960 to 2020[J]. Journal of Glaciology and Geocryology, 2022, 44(3): 885-899.
表1
1960—2020年高加索山地冰川面积变化特征"
时间 | 冰川面积/km2 | 时段 | 变化量/km2 | 变化率/% | 年均变化率/(%·a-1) |
---|---|---|---|---|---|
1960年 | 1 674.72±70.11 | — | — | — | — |
1986年 | 1 481.21±63.83 | 1960—1986年 | -193.51±85.54 | -11.55±5.11 | -0.44±0.20 |
2000年 | 1 345.01±138.37 | 1986—2000年 | -136.20±159.40 | -9.19±10.76 | -0.66±0.77 |
2020年 | 1 087.36±66.44 | 2000—2020年 | -257.66±82.18 | -19.16±6.11 | -0.96±0.31 |
总计 | — | 1960—2020年 | -587.36±98.66 | -35.07±5.89 | -0.58±0.10 |
表3
与其他山系冰川面积变化的对比"
研究者 | 研究区域 | 研究时段 | 冰川面积*/km2 | 年均萎缩率/(%·a-1) |
---|---|---|---|---|
Bolch等[ | 加拿大西部 | 1985—2005年 | 30 063 | 0.55±0.19 |
王凯[ | 阿尔卑斯 | 1984—2013年 | 3 236.28 | 0.91 |
王圣杰等[ | 天山 | 1960—2009年 | — | 0.31 |
He等[ | 祁连山 | 1960s—2015年 | 1 936.17 | 0.47 |
姚晓军等[ | 阿尔泰 | 1960—2009年 | 283.39 | 0.75 |
Li等[ | 帕米尔高原 | 2000—2017年 | 10 520 | 0.07±0.05 |
Brahmbhatt[ | 喀喇昆仑 | 1977—2013年 | 7 895 | 0.00 |
Cao[ | 西昆仑 | 1972—2018年 | 2 965.4 | 0.01 |
冀琴[ | 喜马拉雅 | 1990—2015年 | 23 229.27 | 0.44 |
邱宝刚[ | 念青唐古拉 | 1980—2016年 | 9 237.78 | 0.30 |
本研究 | 高加索 | 1960—2020年 | 1 674.72±70.11 | 0.58±0.10 |
附表1
Landsat影像列表"
影像ID | 行号 | 列号 | 获取日期 | 分辨率 | 主辅影像 |
---|---|---|---|---|---|
LC81670312019233LGN00 | 167 | 031 | 2019-08-21 | 15 m | 主 |
LC81680312017250LGN00 | 168 | 031 | 2017-09-07 | 15 m | 辅 |
LC81680312018205LGN00 | 168 | 031 | 2018-07-24 | 15 m | 辅 |
LC81680312020243LGN00 | 168 | 031 | 2020-08-30 | 15 m | 辅 |
LC81680312021245LGN00 | 168 | 031 | 2021-09-01 | 15 m | 主 |
LC81690312015252LGN00 | 169 | 031 | 2015-09-09 | 15 m | 辅 |
LC81690312017257LGN00 | 169 | 031 | 2017-09-14 | 15 m | 主 |
LC81690312020250LGN00 | 169 | 031 | 2020-09-06 | 15 m | 辅 |
LC81690312021220LGN00 | 169 | 031 | 2021-08-07 | 15 m | 辅 |
LC81700302015227LGN00 | 170 | 030 | 2015-08-15 | 15 m | 辅 |
LC81700302020241LGN00 | 170 | 030 | 2020-08-28 | 15 m | 辅 |
LC81700302020257LGN00 | 170 | 030 | 2020-09-13 | 15 m | 主 |
LC81710302020232LGN00 | 171 | 030 | 2020-08-19 | 15 m | 辅 |
LC81710302020248LGN00 | 171 | 030 | 2020-09-04 | 15 m | 辅 |
LC81710302020264LGN00 | 171 | 030 | 2020-09-20 | 15 m | 主 |
LC81720302020239LGN00 | 172 | 030 | 2020-08-26 | 15 m | 主 |
LC81720302020255LGN00 | 172 | 030 | 2020-09-11 | 15 m | 辅 |
LC81720302020271LGN00 | 172 | 030 | 2020-09-27 | 15 m | 辅 |
LC81730302016235LGN00 | 173 | 030 | 2016-08-22 | 15 m | 辅 |
LC81730302017269LGN00 | 173 | 030 | 2017-09-26 | 15 m | 辅 |
LC81730302020230LGN00 | 173 | 030 | 2020-08-17 | 15 m | 主 |
LT51680311995254RSA01 | 168 | 031 | 1995-09-11 | 30 m | 主 |
LT51690311995245RSA00 | 169 | 031 | 1995-09-02 | 30 m | 主 |
LT51690311998237RSA03 | 169 | 031 | 1998-08-25 | 30 m | 辅 |
LT51690312000227XXX02 | 169 | 031 | 2000-08-14 | 30 m | 辅 |
LT51700301994249RSA01 | 170 | 030 | 1994-09-06 | 30 m | 主 |
LT51700301998260BIK00 | 170 | 030 | 1998-09-17 | 30 m | 辅 |
LT51700302000202RSA00 | 170 | 030 | 2000-07-20 | 30 m | 辅 |
LE71710301999230EDC00 | 171 | 030 | 1999-08-18 | 15 m | 辅 |
LT51710301988240RSA00 | 171 | 030 | 1988-08-27 | 30 m | 辅 |
LT51710301995227RSA01 | 171 | 030 | 1995-08-15 | 30 m | 辅 |
LT51710301995259RSA01 | 171 | 030 | 1995-09-16 | 30 m | 主 |
LT51710301996246RSA00 | 171 | 030 | 1996-09-02 | 30 m | 辅 |
LT51710302000209RSA01 | 171 | 030 | 2000-07-27 | 30 m | 辅 |
LT51720301998226XXX01 | 172 | 030 | 1998-08-14 | 30 m | 辅 |
LT51720301998242XXX01 | 172 | 030 | 1998-08-30 | 30 m | 辅 |
LT51720301998258AAA01 | 172 | 030 | 1998-09-15 | 30 m | 主 |
LT51720301999229XXX03 | 172 | 030 | 1999-08-17 | 30 m | 辅 |
LT51720301999261FUI00 | 172 | 030 | 1999-09-18 | 30 m | 辅 |
LT51720302000264XXX02 | 172 | 030 | 2000-09-20 | 30 m | 辅 |
LT51720302001218RSA01 | 172 | 030 | 2001-08-06 | 30 m | 辅 |
LT51730301998233RSA05 | 173 | 030 | 1998-08-21 | 30 m | 辅 |
LT51730301998265RSA03 | 173 | 030 | 1998-09-22 | 30 m | 主 |
附表2
S-1影像数据列表"
影像编号 | 极化方式 | 成像时间 |
---|---|---|
S1B_IW_SLC__1SDV_20190815T150154_20190815T150227_017598_0211B1_B8AB | VV+VH | 2019-08-15 |
S1B_IW_SLC__1SDV_20190827T150154_20190827T150228_017773_02172D_4E8D | VV+VH | 2019-08-27 |
S1B_IW_SLC__1SDV_20200902T150201_20200902T150234_023198_02C0DB_5C4F | VV+VH | 2020-09-02 |
S1B_IW_SLC__1SDV_20200914T150201_20200914T150235_023373_02C658_C8F2 | VV+VH | 2020-09-14 |
S1A_IW_SLC__1SDV_20200902T030826_20200902T030853_034174_03F840_683E | VV+VH | 2020-09-02 |
S1A_IW_SLC__1SDV_20200914T030826_20200914T030853_034349_03FE62_D14D | VV+VH | 2020-09-14 |
1 | Wang Ninglian, Zhang Xiangsong. Mountain glacier fluctuations and climatic change during the last 100 years[J]. Journal of Glaciology and Geocryology, 1992, 14(3): 242-250. |
王宁练, 张祥松. 近百年来山地冰川波动与气候变化[J]. 冰川冻土, 1992, 14(3): 242-250. | |
2 | Zemp M, Frey H, Gärtner-Roer I, et al. Historically unprecedented global glacier decline in the early 21st century[J]. Journal of glaciology, 2015, 61(228): 745-762. |
3 | Masson-Delmotte V, Zhai P, A P, et al. Climate Change 2021: The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge University Press, 2021. |
4 | Brown M E, Ouyang H, Habib S, et al. HIMALA: climate impacts on glaciers, snow, and hydrology in the Himalayan region[J]. Mountain Research and Development, 2010, 30(4): 401-404. |
5 | H G P, S S. Encyclopedia of climate and weather[J]. Water Resources, 1996, 2: 817-23. |
6 | Milner A M, Khamis K, Battin T J, et al. Glacier shrinkage driving global changes in downstream systems[J]. Proceedings of the National Academy of Sciences, 2017, 114(37): 9770-9778. |
7 | Shahgedanova M, Hagg W, Hassell D, et al. Climate change, glacier retreat, and water availability in the Caucasus Region[M]//Threats to Global Water Security. Springer, Dordrecht, 2009: 131-143. |
8 | Evans S G, Tutubalina O V, Drobyshev V N, et al. Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia in 2002[J]. Geomorphology, 2009, 105(3/4): 314-321. |
9 | Kadetova A V, Rybchenko A A, Kozireva E A, et al. Debris flows of 28 June 2014 near the Arshan village (Siberia, Republic of Buryatia, Russia)[J]. Landslides, 2016, 13(1): 129-140. |
10 | Kotlyakov V, Khromova T, Nosenko G, et al. New data on current changes in the mountain glaciers of Russia[J]. Doklady Earth Sciences, 2015: 1094-1100. |
11 | Tielidze L G. Glacier change over the last century, Caucasus Mountains, Georgia, observed from old topographical maps, Landsat and ASTER satellite imagery[J]. The Cryosphere, 2016, 10(2): 713-725. |
12 | Podozerskiy K. Ledniki Kavkazskogo Khrebta (Glaciers of the Caucasus range): Zapiski Kavkazskogo otdela Russkogo Geograficheskogo Obshchestva[J]. Publ. Zap. KORGO., Tiflis, 1911, 29(1): 200. |
13 | Vinogadov O, Konovalova G, Psareva T. Some characteristics of Caucasus glacier system, methods and results of mapping[J]. Materialy Glyatziologicheskih Issledovanii, 1977, 30: 115-126. |
14 | Gobejishvili R. Saqartvelos tanamedrove mkinvarebi da Evraziis mtebshi gamkinvarebis evolucia gvian Pleistocensa da Holocenshi (Present day glaciers of Georgia and evolution of glaciation in the mountains of Eurasia in late Pleistocene and Holocene), sadoqtoro disertacia[M]. Georgian: Tbilisi, 1995. |
15 | Tielidze L G, Wheate R D. The greater caucasus glacier inventory (Russia, Georgia and Azerbaijan)[J]. The Cryosphere, 2018, 12(1): 81-94. |
16 | Khromova T, Nosenko G, Muraviev A, et al. Mountain area glaciers of Russia in the 20th and the beginning of the 21st centuries[J]. Developments in Earth Surface Processes, 2016, 21: 47-129. |
17 | Cogley J G. A more complete version of the World Glacier Inventory[J]. Annals of Glaciology, 2009, 50(53): 32-38. |
18 | Tielidze L G, Nosenko G A, Khromova T E, et al. Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020[J]. The Cryosphere, 2022, 16(2): 489-504. |
19 | Shahgedanova M, Nosenko G, Kutuzov S, et al. Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography[J]. The Cryosphere, 2014, 8(6): 2367-2379. |
20 | Lur’e P, Panov V. Variations of contemporary glaciation of the northern slope of the Greater Caucasus in the 20th century and the forecast of its degradation in the 21st century[J]. Russian Meteorology and Hydrology, 2014, 39(4): 254-259. |
21 | Huggel C, Allen S, Deline P, et al. Ice thawing, mountains falling—are alpine rock slope failures increasing?[J]. Geology Today, 2012, 28(3): 98-104. |
22 | Stokes C, Popovnin V, Aleynikov A, et al. Recent glacier retreat in the Caucasus Mountains, Russia, and associated increase in supraglacial debris cover and supra-/proglacial lake development[J]. Annals of Glaciology, 2007, 46: 195-203. |
23 | Chernomorets S, Petrakov D, Tutubalina O, et al. Outburst of a glacial lake on the north-eastern slope of the Elbrus on 11 August 2006[J]. Data of Glaciological Research, 2007, 102: 219-224. |
24 | Tielidze L. Introduction, chapter in Glaciers of Georgia[J]. Springer, Geography of the Physical Environment, 2017, 10: 978-981. |
25 | Zemp M, Nussbaumer S U, Gärtner-Roer I, et al. Global Glacier Change Bulletin Nr. 4 (2018-2019)[M]. Zürich: World Glacier Monitoring Service, 2021. |
26 | Shahgedanova M. The physical geography of northern Eurasia[M]. 3th nd. Oxford University Press on Demand, 2003. |
27 | Stokes C R. Sections: Caucasus Mountains pp. 803-808; Novaya Zemlya pp. 781; Palaeo-Ice Stream pp. 127-128[M]. Springer, 2011. |
28 | Solomina O, Bushueva I, Dolgova E, et al. Glacier variations in the Northern Caucasus compared to climatic reconstructions over the past millennium[J]. Global and Planetary Change, 2016, 140: 28-58. |
29 | Raup B, Racoviteanu A, Khalsa S J S, et al. The GLIMS geospatial glacier database: a new tool for studying glacier change[J]. Global and Planetary Change, 2007, 56(1/2): 101-110. |
30 | Crippen R, Buckley S, Belz E, et al. NASADEM global elevation model: methods and progress[M]. Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2016. |
31 | Wang Lu, Wang Ninglian, Li Zhijie, et al. Spatial characteristics of glacier mass balance variations in Shigar basin of the central Karakoram Mountains, 1993—2016[J]. Journal of Glaciology and Geocryology, 2021, 43(1): 1-13. |
王璐, 王宁练, 李志杰, 等. 1993—2016年喀喇昆仑山中部Shigar流域冰川物质平衡变化空间特征研究[J]. 冰川冻土, 2021, 43(1): 1-13. | |
32 | Zang Tao, Liu Jun, Yang Keming, et al. Fusion algorithm for hyperspectral remote sensing image conbined with harmonic analysis and Gram-Schmidt transform[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(9): 1024-1047. |
张涛, 刘军, 杨可明, 等. 结合Gram-Schmidt变换的高光谱影像谐波分析融合算法[J]. 测绘学报, 2015, 44(9): 1024-1047. | |
33 | Frey H, Paul F, Strozzi T. Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results[J]. Remote Sensing of Environment, 2012, 124: 832-843. |
34 | Mölg N, Bolch T, Rastner P, et al. A consistent glacier inventory for Karakoram and Pamir derived from Landsat data: distribution of debris cover and mapping challenges[J]. Earth System Science Data, 2018, 10(4): 1807-1827. |
35 | Guo W, Liu S, Xu J, et al. The Second Chinese Glacier Inventory: data, methods and results[J]. Journal of Glaciology, 2015, 61: 357-372. |
36 | Li Z, Wang N, Chen A A, et al. Slight change of glaciers in the Pamir over the period 2000—2017[J]. Arctic, Antarctic, and Alpine Research, 2022, 54(1): 13-24. |
37 | Cogley J G. Glacier shrinkage across high mountain Asia[J]. Annals of Glaciology, 2016, 57(71): 41-49. |
38 | Hall D K, Bayr K J, Schöner W, et al. Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893—2001)[J]. Remote Sensing of Environment, 2003, 86(4): 566-577. |
39 | Paul F, Barrand N E, Baumann S, et al. On the accuracy of glacier outlines derived from remote-sensing data[J]. Annals of Glaciology, 2013, 54(63): 171-182. |
40 | Zhang Z, Liu S, Zhang Y, et al. Glacier variations at Aru Co in western Tibet from 1971 to 2016 derived from remote-sensing data[J]. Journal of Glaciology, 2018, 64(245): 397-406. |
41 | Khromova T, Nosenko G, Kutuzov S, et al. Glacier area changes in Northern Eurasia[J]. Environmental Research Letters, 2014, 9(1): 015003. |
42 | Li Y J, Ding Y J, Shangguan D H, et al. Regional differences in global glacier retreat from 1980 to 2015[J]. Advances in Climate Change Research, 2019, 10(4): 203-213. |
43 | Bolch T, Menounos B, Wheate R. Landsat-based inventory of glaciers in western Canada, 1985—2005[J]. Remote sensing of Environment, 2010, 114(1): 127-137. |
44 | Wang Kai. Monitoring of glacier area changes in the Alps observed by satellite from 1984 to 2013[D]. Lanzhou: Lanzhou University, 2016. |
王凯. 1984—2013年阿尔卑斯山地区冰川面积变化遥感监测研究[D]. 兰州: 兰州大学, 2016. | |
45 | Wang Shengjie, Zhang Mingjun, Li Zhongqin, et al. Response of glacier area variation to climate change in Chinese Tianshan Mountains in the past 50 years[J]. Acta Geographica Sinica, 2011, 66(1): 38-46. |
王圣杰, 张明军, 李忠勤, 等. 近50年来中国天山冰川面积变化对气候的响应[J]. 地理学报, 2011, 66(1): 38-46. | |
46 | He J, Wang N, Chen A A, et al. Glacier changes in the qilian mountains, northwest China, between the 1960s and 2015[J]. Water, 2019, 11(3): 623. |
47 | Yao Xiaojun, Liu Shiyin, Guo Wanqin, et al. Glacier change of Altay Mountain in China from 1960 to 2009: based on the Second Glacier Inventory of China[J]. Journal of Natural Resources, 2012, 27(10): 1734-1745. |
姚晓军, 刘时银, 郭万钦, 等. 近50a来中国阿尔泰山冰川变化——基于中国第二次冰川编目成果[J]. 自然资源学报, 2012, 27(10): 1734-1745. | |
48 | Brahmbhatt R, Bahuguna I, Rathore B, et al. Satellite monitoring of glaciers in the Karakoram from 1977 to 2013: an overall almost stable population of dynamic glaciers[J]. The Cryosphere Discussions, 2015, 9(2): 1555-1592. |
49 | Cao B, Guan W, Li K, et al. Area and mass changes of glaciers in the West Kunlun Mountains based on the analysis of multi-temporal remote sensing images and DEMs from 1970 to 2018[J]. Remote Sensing, 2020, 12(16): 2632. |
50 | Ji Qin. Glacier variations in response to climate change in the Himalaya during 1990—2015[D]. Lanzhou: Lanzhou University, 2018. |
冀琴. 1990—2015年喜马拉雅山冰川变化及其对气候波动的响应[D]. 兰州: 兰州大学, 2018. | |
51 | Di Baogang. Glacier change in the Nianqing Tanggula Mountains in 36 years and its response to climate change[D]. Beijing: China University of Geosciences, 2019. |
邸宝刚. 念青唐古拉山脉36年来冰川变化及其对气候变化的响应[D]. 北京: 中国地质大学, 2019. | |
52 | Oerlemans J. Extracting a climate signal from 169 glacier records[J]. Science, 2005, 308(5722): 675-677. |
53 | Liu Shiyin, Shangguan Donghui, Ding Yongjian, et al. Variation of glaciers studied on the basis of RS and GIS: a reassessment of the changes of the Xinqinfeng and Malan Ice Caps in the Northern Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2004, 26(3): 244-252. |
刘时银, 上官冬辉, 丁永建, 等. 基于RS与GIS的冰川变化研究——青藏高原北侧新青峰与马兰冰帽变化的再评估[J]. 冰川冻土, 2004, 26(3): 244-252. | |
54 | Zhang Guofei, Li Zhongqin, Wang Wenbin, et al. Change processes and characteristics of mass balance of the Urumqi Glacier No. 1 at the headwater of the Urumqi River, Tianshan Mountains, during 1959—2009[J]. Journal of Glaciology and Geocryology, 2013, 34(6): 1301-1309. |
张国飞, 李忠勤, 王文彬, 等. 天山乌鲁木齐河源1号冰川1959—2009 年物质平衡变化过程及特征研究[J]. 冰川冻土, 2013, 34(6): 1301-1309. | |
55 | Wang Ninglian, Yao Tandong, Tian Lide, et al. Climate sensitivity of Glacier No.1 at the source of Urumqi River in the Tianshan Mountains[J]. Arid Land Geography, 1998, 21(4): 34-40. |
王宁练, 姚檀栋, 田立德, 等. 天山乌鲁木齐河源1号冰川的气候敏感性研究[J]. 干旱区地理, 1998, 21(4): 34-40. | |
56 | Mernild S H, Lipscomb W H, Bahr D B, et al. Global glacier changes: a revised assessment of committed mass losses and sampling uncertainties[J]. The Cryosphere, 2013, 7(5): 1565-1577. |
[1] | 车彦军, 陈丽花, 谷来磊, 张明军, 曹昀, 吴佳康, 赖彦怡. 东昆仑木孜塔格峰地区冰湖演变与冰川物质亏损[J]. 冰川冻土, 2023, 45(4): 1254-1265. |
[2] | 赵丹, 张志刚, 张起鹏. 1974—2020年海螺沟冰川变化遥感监测[J]. 冰川冻土, 2023, 45(4): 1276-1287. |
[3] | 王雪梅, 温理想, 李佳诺, 郭蒙. 基于MODIS EVI的大兴安岭多年冻土区植被物候研究[J]. 冰川冻土, 2023, 45(4): 1379-1390. |
[4] | 张方园, 常娟, 刘健, 孙文军. 青藏高原多年冻土区不同海拔土壤含水量对气候变化的响应[J]. 冰川冻土, 2023, 45(3): 915-929. |
[5] | 梁奔奔, 李晓东, 张东, 申燕玲. 1961—2019年三江源地区季节冻土冻融状态时空变化及影响因素研究[J]. 冰川冻土, 2023, 45(2): 382-394. |
[6] | 周宇, 李国玉, 马巍, 金会军, 陈敦, 毛云程, 杜青松. 石冰川形成机制、运动特征及水文效应研究进展[J]. 冰川冻土, 2023, 45(2): 409-422. |
[7] | 陈聪, 彭小清, 李璇佳, 田伟伟, 杨光尚. 基于观测数据的全球大气冻融指数变化研究[J]. 冰川冻土, 2023, 45(2): 509-520. |
[8] | 彭小清, 田伟伟, 李璇佳, 杨光尚, 赵耀华, 陈聪, 金浩东, 罗京, 李宇星, 孙文, 王庆锋, FRAUENFELD Oliver W., 牟翠翠. 青藏高原和环北极冻土变化研究进展[J]. 冰川冻土, 2023, 45(2): 521-534. |
[9] | 罗栋梁, 金会军, 吴青柏, MAKARIEVA Olga, 田世民, 康建芳, 王金牛, 彭小清, DOBIŃSKI Wojciech, 陈方方. 天然状态下多年冻土区活动层厚度研究进展与展望[J]. 冰川冻土, 2023, 45(2): 558-574. |
[10] | 洪洋, 耿豪鹏, 潘保田. 寒冻风化控制的祁连山风化碎屑的空间分布[J]. 冰川冻土, 2022, 44(4): 1347-1356. |
[11] | 李亚鹏, 张威, 柴乐, 唐倩玉, 葛润泽, 孙波. 1984—2019年念青唐古拉山中段冰川ELA变化估算及特征分析[J]. 冰川冻土, 2022, 44(4): 1165-1174. |
[12] | 李英奎, 杨玮琳, 陈鑫, 刘强, 许向科. 冰川模型及其在古冰川模拟研究中的应用[J]. 冰川冻土, 2022, 44(4): 1231-1247. |
[13] | 段克勤, 石培宏, 何锦屏. 山地冰川变化的数值模拟及其在亚洲高山区的应用[J]. 冰川冻土, 2022, 44(3): 753-761. |
[14] | 郝建盛, 李兰海. 雪崩灾害防治研究进展及展望[J]. 冰川冻土, 2022, 44(3): 762-770. |
[15] | 孙欢, 王宁练. 基于冰川钻孔温度的古气候重建研究进展[J]. 冰川冻土, 2022, 44(3): 784-794. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000