冰川冻土 ›› 2022, Vol. 44 ›› Issue (3): 900-913.doi: 10.7522/j.issn.1000-0240.2022.0086
收稿日期:
2021-06-30
修回日期:
2021-09-01
出版日期:
2022-06-25
发布日期:
2022-08-27
作者简介:
张勇,教授,主要从事冰冻圈变化及其水资源影响研究. E-mail: yong.zhang@hnust.edu.cn
基金资助:
Yong ZHANG1(), Shiyin LIU2, Xin WANG1
Received:
2021-06-30
Revised:
2021-09-01
Online:
2022-06-25
Published:
2022-08-27
摘要:
青藏高原及周边冰川区表碛分布十分广泛,其通过地-气-能-水交换、反照率变化等影响冰川消融及空间特征,导致表碛覆盖型冰川物质平衡响应机制、水文效应及其致灾过程不同于无表碛覆盖型冰川。本文在系统梳理青藏高原及周边冰川区表碛空间分布特征的基础上,综合分析了表碛对冰川区消融、物质平衡和水文过程的影响及其对气候的响应过程,并系统分析了表碛影响观测与模拟的研究进展。目前不同尺度冰川物质平衡和径流模型对表碛影响的考虑依然不足,导致应用现有模型开展表碛分布及动态变化和评估气候变化条件下表碛影响面临诸多挑战。展望未来,深入认识气候-冰川-表碛系统相互作用与反馈机制,发展考虑多物理过程的冰川-表碛系统协同演化的动态模型,预估气候变化驱动下的冰川区表碛动态影响及趋势,进而服务于区域社会经济发展和“绿色丝绸之路”建设。
中图分类号:
张勇, 刘时银, 王欣. 青藏高原及周边冰川区表碛影响研究进展[J]. 冰川冻土, 2022, 44(3): 900-913.
Yong ZHANG, Shiyin LIU, Xin WANG. Debris-cover effect in the Tibetan Plateau and surroundings: a review[J]. Journal of Glaciology and Geocryology, 2022, 44(3): 900-913.
表1
青藏高原及周边典型冰川区表碛观测"
冰川名称 | 纬度/N | 经度/E | 表碛厚度范围/m | 表碛覆盖海拔范围/m | 山脉 | 文献来源 |
---|---|---|---|---|---|---|
科其喀尔冰川 | 41°49′ | 89°10′ | 0.01~2.5 | 3 000~4 000 | 天山 | [ |
72号冰川 | 41°46′ | 79°54′ | 0.05~0.11 | 3 720~4 200 | 天山 | [ |
Baltoro冰川 | 35°35′ | 76°04′ | 0.01~0.15 | 3 370~5 000 | 喀喇昆仑山 | [ |
Hinarche冰川 | 36°03′ | 74°34′ | 0.01~0.38 | 2 703~3 169 | 喀喇昆仑山 | [ |
Biafo冰川 | 35°40′ | 75°50′ | 0.005~0.07 | 3 602~4 105 | 喀喇昆仑山 | [ |
Batal冰川 | 32°13′ | 77°05′ | 0.0~1.0 | 4 300~5 000 | 喜马拉雅山 | [ |
Khumbu冰川 | 27°56′ | 86°49′ | 0.10~2.0 | 4 900~5 400 | 喜马拉雅山 | [ |
Ngozumpa冰川 | 27°57′ | 85°42′ | 0.05~3.0 | 4 659~5 500 | 喜马拉雅山 | [ |
Imja-Lhotse Shar冰川 | 27°54′ | 86°56′ | 0.05~0.35 | — | 喜马拉雅山 | [ |
Lirung冰川 | 28°14′ | 85°33′ | 0.11~2.3 | 4 004~5 260 | 喜马拉雅山 | [ |
绒布冰川 | 28°05′ | 86°50′ | 0.01~0.45 | 5 260~5 750 | 喜马拉雅山 | [ |
24K冰川 | 29°45′ | 95°44′ | 0.01~0.7 | 3 900~4 240 | 岗日嘎布山 | [ |
海螺沟冰川 | 29°36′ | 101°57′ | 0.01~1.2 | 2 900~3 600 | 贡嘎山 | [ |
1 | Yao Tandong, Wu Guangjian, Xu Baiqing, et al. Asian Water Tower change and its impacts[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1203-1209. |
姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1203-1209. | |
2 | Immerzeel W W, Beek L P H V, Bierkens M F P, et al. Climate change will affect the Asian Water Towers[J]. Science, 2010, 328(5984): 1382-1385. |
3 | Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70(1): 3-16. |
刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16. | |
4 | Wang Ninglian, Yao Tandong, Xu Baiqing, et al. Spatiotemporal pattern, trend, and influence of glacier change in Tibetan Plateau and surroundings under global warming[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1220-1232. |
王宁练, 姚檀栋, 徐柏青, 等. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响[J]. 中国科学院院刊, 2019, 34(11): 1220-1232. | |
5 | Liu Shiyin, Zhang Yong, Liu Qiao, et al. Study on the impact of climate change on glacier and its risk[M]. Beijing: Science Press, 2017. |
刘时银, 张勇, 刘巧, 等. 气候变化对冰川影响与风险研究[M]. 北京: 科学出版社, 2017. | |
6 | Zhang Y, Hirabayashi Y, Fujita K, et al. Heterogeneity in supraglacial debris thickness and its role in glacier mass changes of Mount Gongga[J]. Science China: Earth Sciences, 2016, 59(1): 170-184. |
7 | Kraaijenbrink P D A, Bierkens M F P, Lutz A F, et al. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s Glaciers[J]. Nature, 2017, 549: 257-260. |
8 | Mölg N, Bolch T, Rastner P, et al. A consistent glacier inventory for the Karakoram and Pamir derived from Landsat data: distribution of debris cover and mapping challenges[J]. Earth System Science Data, 2018, 10: 1807-1827. |
9 | Scherler D, Wulf H, Gorelick N. Global assessment of supraglacial debris-cover extents[J]. Geophysical Research Letters, 2018, 45(21): 11798-711805. |
10 | Herreid S, Pellicciotti F. The state of rock debris covering Earth’s glaciers[J]. Nature, 2020, 13(9): 621-627. |
11 | Benn D I, Bolch T, Hands K, et al. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards[J]. Earth-Science Reviews, 2012, 114(1/2): 156-174. |
12 | Jones D B, Harrison S, Anderson K, et al. Rock glaciers and mountain hydrology: a review[J]. Earth-Science Reviews, 2019, 193: 66-90. |
13 | Ding Yongjian, Zhao Qiudong, Wu Jinkui, et al. The future changes of Chinese cryospheric hydrology and their impacts on water security in arid areas[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 23-32. |
丁永建, 赵求东, 吴锦奎, 等. 中国冰冻圈水文未来变化及其对干旱区水安全的影响[J]. 冰川冻土, 2020, 42(1): 23-32. | |
14 | Dubey S, Goyal M K. Glacial lake outburst flood hazard downstream impact, and risk over the Indian Himalaya[J]. Water Resources Research, 2020, 56(4): e2019WR026533. |
15 | Li Jijun, Su Zhen. Glaciers in the Hengduan Mountains[M]. Beijing: Science Press, 1996. |
李吉均, 苏珍. 横断山冰川[M]. 北京: 科学出版社, 1996. | |
16 | Benn D I, Evans D J. Glaciers and glaciation[M]. London: Hodder Education, 2010. |
17 | Kirkbride M P, Deline P. The formation of supraglacial debris covers by primary dispersal from transverse englacial debris bands[J]. Earth Surface Processes and Landforms, 2013, 38: 1779-1792. |
18 | Nagai H, Fujita K, Nuimura T, et al. Southwest-facing slopes control the formation of debris-covered glaciers in the Bhutan Himalaya[J]. The Cryosphere, 2013, 7(4): 1303-1314. |
19 | Østrem G. Ice melting under a thin layer of moraine and the existence of ice cores in moraine ridges[J]. Geografiska Annaler, 1959, 41: 228-230. |
20 | Nakawo M, Young G J. Estimate of glacier ablation under a debris layer from surface temperature and meteorological variables[J]. Journal of Glaciology, 1982, 28(98): 29-34. |
21 | Nakawo M, Young G J. Field experiments to determine the effect of a debris layer on ablation of glacier ice[J]. Annals of Glaciology, 1981, 2: 85-91. |
22 | Mattson L E, Gardner J S, Young G J. Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Punjab, Himalaya[J]. International Association of Hydrological Sciences Publication, 1993, 218: 289-296. |
23 | Nicholson L, Benn D I. Calculating ice melt beneath a debris layer using meteorological data[J]. Journal of Glaciology, 2006, 52(178): 463-470. |
24 | Fujita K, Sakai A. Modelling runoff from a Himalayan debris-covered glacier[J]. Hydrology and Earth System Sciences, 2014, 18(7): 2679-2694. |
25 | Zhang Y, Liu S, Liu Q, et al. The role of debris cover in catchment runoff: a case study of the Hailuogou catchment, South-Eastern Tibetan Plateau[J]. Water, 2019, 11: 2601. |
26 | Miles K E, Hubbard B, Irvine-Fynn T D L, et al. Hydrology of debris-covered glaciers in High Mountain Asia[J]. Earth-Science Reviews, 2020, 207: 103212. |
27 | Zhang Y, Fujita K, Liu S, et al. Distribution of debris thickness and its effect on ice melt at Hailuogou Glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery[J]. Journal of Glaciology, 2011, 57(206): 1147-1157. |
28 | Thakuri S, Salerno F, Smiraglia C, et al. Tracing glacier changes since the 1960s on the south slope of Mt. Everest (central Southern Himalaya) using optical satellite imagery[J]. The Cryosphere, 2014, 8: 1297-1315. |
29 | Tielidze L G, Bolch T, Wheate R D, et al. Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014[J]. The Cryosphere, 2020, 14: 585-598. |
30 | Xie F, Liu S, Wu K, et al. Upward expansion of supra-glacial debris cover in the Hunza Valley, Karakoram, during 1990∼2019[J]. Frontiers in Earth Science, 2020, 8: 308. |
31 | Zhang Yong, Liu Shiyin. Research progress on debris thickness estimation and its effect on debris-covered glaciers in western China[J]. Acta Geographica Sinica, 2017, 72(9): 1606-1620. |
张勇, 刘时银. 中国冰川区表碛厚度估算及其影响研究进展[J]. 地理学报, 2017, 72(9): 1606-1620. | |
32 | Han H, Ding Y, Liu S. A simple model to estimate ice ablation under a thick debris layer[J]. Journal of Glaciology, 2006, 52(179): 528-536. |
33 | Nicholson L, McCarthy M, Pritchard H D, et al. Supraglacial debris thickness variability: impact on ablation and relation to terrain properties[J]. The Cryosphere, 2018, 12: 3719-3734. |
34 | Buri P, Miles E S, Steiner J, et al. Supraglacial ice cliffs can substantially increase the mass loss of debris-covered glaciers[J]. Geophysical Research Letter, 2021, 48: e2020GL092150. |
35 | Reid T D, Brock B W. An energy-balance model for debris-covered glaciers including heat conduction through the debris layer[J]. Journal of Glaciology, 2010, 56(199): 903-916. |
36 | Rounce D R, Hock R, Shean D E. Glacier mass change in High Mountain Asia through 2100 using the open-source Python Glacier Evolution Model (PyGEM)[J]. Frontiers in Earth Science, 2020, 7: 331. |
37 | Scherler D, Bookhagen B, Strecker M R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover[J]. Nature Geoscience, 2011, 4: 156-159. |
38 | Zheng Y, Zhang Y, Gu J, et al. Spatial distribution of supraglacial debris thickness on glaciers of the China-Pakistan Economic Corridor and surroundings[J]. Science in Cold and Arid Regions, 2020, 12(6): 447-460. |
39 | Reznichenko N, Davies T, Shulmeister J, et al. Effects of debris on ice-surface melting rates: an experimental study[J]. Journal of Glaciology, 2010, 56(197): 384-394. |
40 | Mountaineering and Expedition Team of Chinese Academy of Sciences. Glacial and weather in Mt. Tuomuer district, Tianshan[M]. Urumqi: Xinjiang People’s Publishing House, 1985. |
中国科学院登山队. 天山托木尔峰地区的冰川与气象[M]. 乌鲁木齐: 新疆人民出版社, 1985. | |
41 | Hambrey M J, Quincey D J, Glasser N F, et al. Sedimentological, geomorphological and dynamic context of debris-mantled glaciers, Mount Everest (Sagarmatha) region, Nepal[J]. Quaternary Science Reviews, 2008, 27: 2361-2389. |
42 | Anderson, R S. A model of ablation-dominated medial moraines and the generation of debris-mantled glacier snouts[J]. Journal of Glaciology, 2000, 46: 459-469. |
43 | Nienow P W, Sharp M, Willis I C. Seasonal changes in the morphology of the subglacial drainage system, Haut Glacier d’Arolla, Switzerland[J]. Earth Surface Processes and Landforms, 1998, 23: 825-843. |
44 | Campbell F M A, Nienow P W, Purves R S. Role of the supraglacial snowpack in mediating meltwater delivery to the glacier system as inferred from dye tracer investigations[J]. Hydrological Processes, 2006, 20: 969-985. |
45 | Fyffe C L, Brock B W, Kirkbride M P, et al. Do debris-covered glaciers demonstrate distinctive hydrological behaviour compared to clean glaciers?[J] Journal of Hydrology, 2019, 570: 584-597. |
46 | Liu Qiao, Liu Shiyin. Progress in the study of englacial and subglacial drainage system of glaciers[J]. Advances in Earth Science, 2012, 27(6): 660-669. |
刘巧, 刘时银. 冰川冰内及冰下水系研究综述[J]. 地球科学进展, 2012, 27(6): 660-669. | |
47 | Mair D, Nienow P, Sharp M J, et al. Influence of subglacial drainage system evolution on glacial surface motion: Haut Glacier d’Arolla, Switzerland[J]. Journal of Geophysical Research, 2002, 107 (B8): EPM 8-1-EPM 8-13. |
48 | Han Haidong, Liu Shiyin, Ding Yongjian, et al. Investigation of ice cliffs in the debris-covered area of Koxkar Glacier, Tianshan[J]. Journal of Glaciology and Geocryology, 2006, 28(6): 879-884. |
韩海东, 刘时银, 丁永建, 等. 科其喀尔冰川表碛区冰崖形态调查[J]. 冰川冻土, 2006, 28(6): 879-884. | |
49 | Sakai A, Fujita K. Formation conditions of supraglacial lakes on debris-covered glaciers in the Himalayas[J]. Journal of Glaciology, 2010, 56(195): 177-181. |
50 | Sakai A, Nakawo M, Fujita K. Distribution characteristics and energy balance of ice cliffs on debris-covered glaciers, Nepal Himalaya[J]. Arctic, Antarctic, and Alpine Research, 2002, 34(1):12-19. |
51 | Buri P, Miles E S, Steiner J F, et al. A physically based 3-D model of ice cliff evolution over debris-covered glaciers[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(12): 2471-2493. |
52 | Han H, Wang J, Wei J, et al. Backwasting rate on debris-covered Koxkar Glacier, Tuomuer Mountain, China[J]. Journal of Glaciology, 2010, 56 (196): 287-296. |
53 | Pellicciotti F, Stephan C, Miles E, et al. Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from 1974 to 1999[J]. Journal of Glaciology, 2015, 61(226): 373-386. |
54 | Ragettli S, Bolch T, Pellicciotti F. Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal[J]. The Cryosphere, 2016, 10(5): 2075-2097. |
55 | Miles E S, Willis I, Buri P, et al. Surface pond energy absorption across four Himalayan Glaciers accounts for 1/8 of total catchment ice loss[J]. Geophysical Research Letters, 2018, 45: 10464-10473. |
56 | Kirkbride M. Ice-marginal geomorphology and Holocene expansion of debris-covered Tasman Glacier, New Zealand[J]. International Association of Hydrological Sciences Publication, 2000, 264: 211-217. |
57 | Bosson J-B, Lambiel C. Internal structure and current evolution of very small debris-covered glacier systems located in alpine permafrost environments[J]. Frontiers in Earth Science, 2016, 4: 39. |
58 | Zhang Y, Hirabayashi Y, Liu S. Catchment-scale reconstruction of glacier mass balance using observations and global climate data: case study of the Hailuogou catchment, south-eastern Tibetan Plateau[J]. Journal of Hydrology, 2012, 444/445: 146-160. |
59 | Bolch T, Kulkarni A, Kääb A, et al. The state and fate of Himalayan glaciers[J]. Science, 2012, 336: 310-314. |
60 | Kääb A, Berthier E, Nuth C, et al. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas[J]. Nature, 2012, 488: 495-498. |
61 | Østrem G. Ice-cored moraines in Scandinavia. Geografiska Annaler, 1964, 46(A): 282-337. |
62 | Khan M. Ablation on Barpu Glacier, Karakoram Himalaya, Pakistan: a study of melt processes on a faceted, debris-covered ice surface[D]. Wilfrid Lauries University, Waterloo, Canada. 1989: 158. |
63 | Kirkbride M P, Dugmore A J. Glaciological response to distal tephra fallout from the 1947 eruption of Hekla, south Iceland[J]. Journal of Glaciology, 2003, 49: 420-428. |
64 | Bozhinskiy A N, Krass M S, Popovin V V. Role of debris cover in the thermal physics of glaciers[J]. Journal of Glaciology, 1986, 32: 255-266. |
65 | Mihalcea C, Mayer C, Diolaiuti G, et al. Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan[J]. Annals of Glaciology, 2008, 48: 49-57. |
66 | Muhammad S, Tian L, Ali S, et al. Thin debris layers do not enhance glaciers melt in the Karakoram[J]. Science of the Total Environment, 2020, 746: 141119. |
67 | Han Haidong, Liu Shiyin, Ding Yongjian. An improved model for estimating ice ablation under a debris cover[J]. Journal of Glaciology and Geocryology, 2007, 29(3): 433-439. |
韩海东, 刘时银, 丁永建. 表碛下冰面消融模型的改进[J]. 冰川冻土, 2007, 29(3): 433-439. | |
68 | Liu Weigang, Xiao Cunde, Liu Jingshi, et al. Analyzing the ablation rate characteristics of the Rongbuk Glacier on the Mt. Qomolangma, Central Himalayas[J]. Journal of Glaciology and Geocryology, 2013, 35(4): 814-823. |
刘伟刚, 效存德, 刘景时, 等. 喜马拉雅山珠穆朗玛峰北坡绒布冰川消融速率特征分析[J]. 冰川冻土, 2013, 35(4): 814-823. | |
69 | Yang W, Yao T, Xu B, et al. Influence of supraglacial debris on summer ablation and mass balance in the 24K Glacier, Southeast Tibetan Plateau[J]. Geografiska Annaler, 2010, 92(3): 353-360. |
70 | Luo Lun, Zhu Liping, Wang Yongjie, et al. The process of freezing and thawing and the zero curtain effect of debris-covered area of the Galongla Glacier in the southeastern Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 751-760. |
罗伦, 朱立平, 王永杰, 等. 藏东南嘎隆拉冰川表碛冻融过程与零点幕效应[J]. 冰川冻土, 2019, 41(4): 751-760. | |
71 | Zhang Yong. Study on response of glacier runoff to climate change in representative glacierized catchment, China[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2009. |
张勇. 典型流域冰川径流对气候变化的响应研究[D]. 北京: 中国科学院研究生院, 2009. | |
72 | Wang L, Li Z, Wang F. Spatial distribution of the debris layer on glaciers of the Tuomuer Peak, western Tian Shan[J]. Journal of Earth Science, 2011, 22(4): 528-538. |
73 | Mihalcea C, Mayer C, Diolaiuti G, et al. Ablation conditions on the debris covered part of Baltoro Glacier, Karakoram[J]. Annals of Glaciology, 2006, 43: 292-300. |
74 | Mayer C, Lambrecht A, Mihalcea C, et al. Analysis of glacial meltwater in Bagrot Valley, Karakoram[J]. Mountain Research and Development, 2010, 30(2): 169-177. |
75 | Ashraf M, Khan A R. Biafo Glacier Field Investigations 2015[M]. WAPDA, Pakistan, 2016. |
76 | Patel L K, Sharma P, Thamban M, et al. Debris control on glacier thinning: a case study of the Batal glacier, Chandra basin, Western Himalaya[J] Arabian Journal of Geosciences, 2016, 9(4): 309. |
77 | Nakawo M, Iwata S, Watanabe O, et al. Processes which distribute supraglacial debris on the Khumbu Glacier, Nepal Himalaya[J]. Annals of Glaciology, 1986, 8: 129-131. |
78 | Rounce D R, McKinney D C. Debris thickness of glaciers in the Everest area (Nepal Himalaya) derived from satellite imagery using a nonlinear energy balance model[J]. The Cryosphere, 2014, 8(4): 1317-1329. |
79 | McCarthy M, Pritchard H, Willis I A N, et al. Ground-penetrating radar measurements of debris thickness on Lirung Glacier, Nepal[J]. Journal of Glaciology, 2017, 63(239): 543-555. |
80 | Collier E, Maussion F, Nicholson L I, et al. Impact of debris cover on glacier ablation and atmosphere-glacier feedbacks in the Karakoram[J]. The Cryosphere, 2015, 9: 1617-1632. |
81 | Zhang Yong, Liu Shiyin, Shangguan Donghui, et al. Study of the positive degree-day factors on the Koxkar Baqi Glacier on the south slope of Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2005, 27(3): 337-343. |
张勇, 刘时银, 上官冬辉, 等. 天山南坡科其卡尔巴契冰川度日因子变化特征研究[J]. 冰川冻土, 2005, 27(3): 337-343. | |
82 | Mattson L E, Gardner J S. Energy exchange and ablation rates on the debris covered Rakhiot Glacier, Pakistan[J]. Zeitschrift fur Gletscherkunde und Glazialgeologie, 1989, 25(1): 17-32. |
83 | Kayastha R B, Takeuchi Y, Nakawo M, et al. Practical prediction of ice melting beneath various thickness of debris cover on Khumbu Glacier, Nepal, using a positive degree-day factor[J]. International Association of Hydrological Sciences Publication, 2000, 264: 71-81. |
84 | Singh P, Kumar N, Arora M .Degree day factors for snow and ice for Dokriani Glacier, Garhwal Himalayas[J]. Journal of Hydrology, 2000, 235: 1-11. |
85 | Zhang Y, Liu S, Ding Y. Glacier meltwater and runoff modelling, Keqicar Baqi glacier, southwestern Tien Shan, China[J]. Journal of Glaciology, 2007, 53(180): 91-98. |
86 | Immerzeel W W, van Beek L P H, Konz M, et al. Hydrological response to climate change in a glacierized catchment in the Himalayas[J]. Climate Change, 2012, 110: 721-736. |
87 | Immerzeel W W, Pellicciotti F, Bierkens M F P. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds[J]. Nature Geoscience, 2013, 6: 742-745. |
88 | Lutz A F, Immerzeel W W, Kraaijenbrink P D, et al. Climate change impacts on the upper Indus hydrology: sources, shifts and extremes[J]. PLoS One, 2016, 11(11): e0165630. |
89 | Lutz A F, Immerzeel W W, Shrestha A B, et al. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation[J]. Nature Climate Change, 2014, 4(7): 587-592. |
90 | Kraus H. An energy balance model for ablation in mountainous areas[J]. International Association of Hydrological Sciences Publication, 1975, 104: 74-82. |
91 | Foster L A, Brock B W, Cutler M E J, et al. A physically based method for estimating supraglacial debris thickness from thermal band remote-sensing data[J]. Journal of Glaciology, 2012, 58(210): 677-691. |
92 | Reid T D, Carenzo M, Pellicciotti F, et al. Including debris cover effects in a distributed model of glacier ablation[J]. Journal of Geophysical Research, 2012, 117: D18105. |
93 | Rounce D R, Quincey D J, McKinney D C. Debris-covered glacier energy balance model for Imja-Lhotse Shar Glacier in the Everest region of Nepal[J]. The Cryosphere, 2015, 9(6): 2295-2310. |
94 | Huang L, Li Z, Tian B, et al. Recognition of supraglacial debris in the Tianshan Mountains on polarimetric SAR images[J]. Remote Sensing of Environment, 2014, 145: 47-54. |
95 | Juen M, Mayer C, Lambrecht A, et al. Impact of varying debris cover thickness on ablation: a case study for Koxkar Glacier in the Tien Shan[J]. The Cryosphere, 2014, 8(2): 377-386. |
96 | Nicholson L, Benn D I. Properties of natural supraglacial debris in relation to modelling sub-debris ice ablation[J]. Earth Surface Processes and Landforms, 2013, 38(5): 490-501. |
97 | Konrad S K, Humphrey N F. Steady-state flow model of debris-covered glaciers (rock glaciers)[J]. International Association of Hydrological Sciences Publication, 2000, 264: 255-266. |
98 | Vacco D A, Alley R B, Pollard D. Glacial advance and stagnation caused by rock avalanches[J]. Earth and Planetary Science Letters, 2010, 294: 123-130. |
99 | Banerjee A, Shankar R. On the response of Himalayan glaciers to climate change[J]. Journal of Glaciology, 2013, 59: 480-490. |
100 | Anderson R S, Anderson L S, Armstrong W H, et al. Glaciation of alpine valleys: the glacier-debris-covered glacier-rock glacier continuum[J]. Geomorphology, 2018, 311: 127-142. |
101 | Rowan A V, Egholm D L, Quincey D J, et al. Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya[J]. Earth and Planetary Science Letters, 2015, 430: 427-438. |
102 | Anderson L S, Anderson R S. Modeling debris-covered glaciers: response to steady debris deposition[J]. The Cryosphere, 2016, 10: 1105-1124. |
103 | Wirbel A, Jarosch A H, Nicholson L. Modelling debris transport within glaciers by advection in a full-Stokes ice flow model[J]. The Cryosphere, 2018, 12: 189-204. |
104 | Chen Wanbao, Liu Shiyin, Li Weide, et al. An analysis of the ice temperature and velocity along the main flowline of Guliya Ice Cap of Western Kunlun Mountains based on glacier dynamic model[J]. Chinese Science Bulletin, 2017, 62(33): 3910-3921. |
陈万宝, 刘时银, 李维德, 等. 基于冰川动力学的古里雅冰帽稳定态建模分析[J]. 科学通报, 2017, 62(33): 3910-3921. | |
105 | Duan Keqin, Yao Tandong, Wang Ninglian, et al. Numerical simulation of Urumqi Glacier No. 1 in the eastern Tianshan, central Asia from 2005 to 2070[J]. Chinese Science Bulletin, 2012, 57(36): 3511-3515. |
段克勤, 姚檀栋, 王宁练, 等. 天山乌鲁木齐河源1号冰川变化的数值模拟及其对气候变化的响应分析[J]. 科学通报, 2012, 57(36): 3511-3515. | |
106 | Zhang T, Xiao C, Colgan W, et al. Observed and modelled ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya[J]. Journal of Glaciology, 2013, 59(215): 438-448. |
107 | Zhao L, Tian L, Zwinger T, et al. Numerical simulations of Gurenhekou Glacier on the Tibetan Plateau[J]. Journal of Glaciology, 2014, 60(219): 71-82. |
108 | Wang Y, Zhang T, Ren J, et al. An investigation of the thermomechanical features of Laohugou Glacier No. 12 on Qilian Shan, western China, using a two-dimensional first-order flow-band ice flow model[J]. The Cryosphere, 2018, 12: 851-866. |
109 | Hock R, Bliss A, Marzeion B E N, et al. GlacierMIP: a model intercomparison of global-scale glacier mass-balance models and projections[J]. Journal of Glaciology, 2019, 65: 453-467. |
110 | Nakawo M, Rana B. Estimate of ablation rate of glacier ice under a supraglacial debris layer[J]. Geografiska Annaler, 1999, 81A: 695-701. |
111 | Suzuki R, Fujita K, Ageta Y. Spatial distribution of the thermal properties on debris-covered glaciers in the Himalayas derived from ASTER data[J]. Bulletin of Glaciological Research, 2007, 24: 13-22. |
[1] | 李心如, 卢善龙, 王勇, 李明阳, 方纯, 杜聪, 王南. 青藏高原典型内流-外流盆地水力联系潜在变化研究[J]. 冰川冻土, 2023, 45(4): 1220-1232. |
[2] | 齐冬梅, 李跃清, 周长艳, 陈超, 赖欣. 1979—2016年青藏高原水汽收支的气候变化特征及其成因[J]. 冰川冻土, 2023, 45(3): 846-864. |
[3] | 张方园, 常娟, 刘健, 孙文军. 青藏高原多年冻土区不同海拔土壤含水量对气候变化的响应[J]. 冰川冻土, 2023, 45(3): 915-929. |
[4] | 王琨莹, 冯金良, 裴乐乐, 胡海平, 陈锋, 林永崇, 张继峰, 胡兆国. 青藏高原纳木错异常高湖面重建工作研究进展与展望[J]. 冰川冻土, 2023, 45(3): 930-939. |
[5] | 刘晓明, 于正良, 邬光剑, 杨一博, 叶程程, 高少鹏, 黄菊. 前处理方法对积雪样品主要阳离子浓度的影响研究[J]. 冰川冻土, 2023, 45(3): 1142-1154. |
[6] | 陈刚, 陈兴杰, 张彦丽. 联合SAR与光学遥感数据的山区积雪消融识别[J]. 冰川冻土, 2023, 45(3): 1155-1167. |
[7] | 谢佩瑶, 韩超, 欧阳志棋, 王晓艳. 青藏高原不同土地覆盖类型下积雪面积判别算法优化[J]. 冰川冻土, 2023, 45(3): 1168-1179. |
[8] | 魏庆, 钟歆玥, 赵文宇, 张廷军. 第三极和北极地区积雪水资源时空特征分析[J]. 冰川冻土, 2023, 45(2): 665-675. |
[9] | 王冰泉, 冉有华. 基于机器学习的第三极季节冻土最大冻结深度未来变化预测[J]. 冰川冻土, 2023, 45(2): 798-807. |
[10] | 周伟, 曹鑫, 王科明, 肖洁芸, 王婷, 李浩然, 姬翠翠. 土壤有机碳含量高光谱建模研究[J]. 冰川冻土, 2023, 45(2): 823-832. |
[11] | 成倬鋆, 刘桂民, 王耀新, 母梅, 朱永基, 董文文, 牟翠翠, 马鹏, 李羽莹, 王莉, 吴晓东. 温度对青藏高原热融湖塘沉积物甲烷产量的影响[J]. 冰川冻土, 2023, 45(2): 548-557. |
[12] | 黄晓东, 马英, 李雨馨, 杨霞礼. 1980—2020年青藏高原积雪时空变化特征[J]. 冰川冻土, 2023, 45(2): 423-434. |
[13] | 袁源, 李璐含, 胡伟, 左洪超, 马耀明. 青藏高原土壤湿度-气候相互影响研究进展[J]. 冰川冻土, 2023, 45(2): 341-354. |
[14] | 罗汉, 张强, 杨兴国, 奚立宗, 程鹏, 王琦, 岳平, 沈秉璐. 祁连山云降水特征及云水资源开发利用技术研究进展与展望[J]. 冰川冻土, 2023, 45(2): 368-381. |
[15] | 彭小清, 田伟伟, 李璇佳, 杨光尚, 赵耀华, 陈聪, 金浩东, 罗京, 李宇星, 孙文, 王庆锋, FRAUENFELD Oliver W., 牟翠翠. 青藏高原和环北极冻土变化研究进展[J]. 冰川冻土, 2023, 45(2): 521-534. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000