冰川冻土 ›› 2022, Vol. 44 ›› Issue (3): 930-945.doi: 10.7522/j.issn.1000-0240.2022.0089
收稿日期:
2022-05-31
修回日期:
2022-06-14
出版日期:
2022-06-25
发布日期:
2022-08-27
通讯作者:
张勇
E-mail:zhaoyin0629@163.com;yong.zhang@hnust.edu.cn
作者简介:
赵银,硕士研究生,主要从事冰川变化研究. E-mail: zhaoyin0629@163.com
基金资助:
Yin ZHAO1(), Yong ZHANG1,2(
), Shiyin LIU3, Xin WANG1
Received:
2022-05-31
Revised:
2022-06-14
Online:
2022-06-25
Published:
2022-08-27
Contact:
Yong ZHANG
E-mail:zhaoyin0629@163.com;yong.zhang@hnust.edu.cn
摘要:
青藏东南部海洋型冰川具有独特的气候敏感性,普遍呈现加速退缩趋势,这不仅影响区域水资源安全,而且伴生了相应的冰川灾害,是当前青藏高原冰冻圈变化研究的热点区域之一。本文对海洋型冰川物质平衡时空变化特征进行了综述,2000年以来冰川总体处于物质亏损状态,其平均物质平衡介于-0.66~-0.61 m w.e.·a-1之间;同时总结了海洋型冰川物质加速变化的驱动因素以及新特征。当前海洋型冰川物质平衡变化研究受观测数据缺乏和模型模拟不确定性等问题限制,尤其现有模型对冰面裂隙增多与扩张、冰崖-冰面湖-表碛相互作用、冰内冰下过程、冰崩、末端冰湖水-冰相互作用等过程的描述过于简化或基本缺失,其机理及影响仍存在较大的不确定性。未来需加强海洋型冰川物质平衡的综合监测,基于多数据和多方法的集成研究提高模型对冰川物质平衡多物理过程的耦合与模拟能力,为开展海洋型冰川物质变化的区域水资源效应和致灾效应研究奠定基础。
中图分类号:
赵银, 张勇, 刘时银, 王欣. 青藏高原东南部海洋型冰川物质平衡研究进展[J]. 冰川冻土, 2022, 44(3): 930-945.
Yin ZHAO, Yong ZHANG, Shiyin LIU, Xin WANG. Review of maritime glacier mass balance in the southeastern Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2022, 44(3): 930-945.
表2
青藏高原东南部不同山区有观测和重建物质平衡序列的海洋型冰川"
冰川 | 位置 | 观测/模拟 时段 | 海拔范围/(m a.s.l.) | 长度/km | 面积/km² | 平均物质平衡/m w.e. | 年均气温/(℃·a-1) | 年降水/(mm·a-1) | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
白水河 1号冰川 | 27.10° N, 100.19° E | 2008—2020/ [1952—2014] | 4 390~5 096 | 1.9 | 1.32 | -1.46 | -0.11 | 2 398 | [ |
海螺沟 冰川 | 29.58° N, 101.91° E | 1989—1993/ [1950—2019] | 2 984~7 142 | 13.1 | 25.71 | [-0.58] | 4.6 | 1 884 | [ |
帕隆藏布 4号冰川 | 29.23° N, 96.92° E | 2006—2007/ — | 4 659~5 939 | 8.0 | 11.7 | -0.71 | 3.7 | — | [ |
帕隆藏布10号冰川 | 29.28° N, 96.90° E | 2005—2008/ [1952—2014] | 4 910~5 625 | 2.1 | 3.5 | -0.78 | — | — | [ |
帕隆藏布12号冰川 | 29.30° N, 96.90° E | 2005—2009/ [1952—2014] | 5 130~5 265 | 0.6 | 0.2 | -1.70 | — | — | [ |
帕隆藏布94号冰川 | 29.38° N, 96.97° E | 2006—2018/ [1952—2014] | 5 000~5 635 | 2.9 | 2.5 | -0.94 | — | — | [ |
帕隆藏布390号冰川 | 29.35° N, 97.02° E | 2006—2009/ [1952—2014] | 5 160~5 460 | 1.2 | 0.5 | -1.02 | — | — | [ |
雅弄冰川 | 29.33° N, 96.66° E | 1980—2014/ — | 3 969~6 341 | 31.1 | 191 | -0.65 | -4.6 | 1 800 | [ |
古仁河口 冰川 | 30.18° N, 90.46° E | 2004—2009/ — | 5 500~6 000 | 2.5 | 1.4 | -0.33 | — | — | [ |
Yala | 28.25° N, 85.60° E | 2012—2019/ [1952—2014] | 5 086~5 642 | 1.5 | 1.9 | -0.95 | 1.5 | 1 057 | [ |
Mera | 27.70° N, 86.90° E | 2008—2019/ — | 4 940~6 420 | 3.1 | 4.84 | -0.03 | — | — | [ |
Pokalde | 27.90° N, 86.80° E | 2010—2019/ [1952—2014] | 5 430~5 660 | 0.7 | 0.08 | -0.79 | — | — | [ |
AX010 | 27.70° N, 86.57° E | 1996—1999/ [1952—2014] | 4 952~5 360 | 1.7 | 0.38 | -0.73 | 2.5 | 1 427 | [ |
1 | Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667. |
2 | Wang Ninglian, Yao Tandong, Xu Baiqing, et al. Spatiotemporal pattern, trend, and influence of glacier change in Tibetan Plateau and surroundings under global warming[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1220-1232. |
王宁练, 姚檀栋, 徐柏青, 等. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响[J]. 中国科学院院刊, 2019, 34(11): 1220-1232. | |
3 | Yao Tandong, Wu Guangjian, Xu Baiqing, et al. Asian Water Tower change and its impacts[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1203-1209. |
姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1203-1209. | |
4 | Immerzeel W W, Lutz A F, Andrade M, et al. Importance and vulnerability of the World’S Water Towers[J]. Nature, 2020, 577(7790): 364-369. |
5 | Ding Yongjian, Zhang Shiqiang, Wu Jinkui, et al. Recent progress on studies on cryospheric hydrological processes changes in China[J]. Advances in water Science, 2020, 31(5): 690-702. |
丁永建, 张世强, 吴锦奎, 等. 中国冰冻圈水文过程变化研究新进展[J]. 水科学进展, 2020, 31(5): 690-702. | |
6 | Yao T D, Xue Y K, Chen D L, et al. Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444. |
7 | Lee J Y, Marotzke J, Bala G, et al. Future global climate: scenario-based projections and near-term information[M]//Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2021: 553-672. |
8 | You Qinglong, Kang Shichang, Li Jiandong, et al. Several research frontiers of climate change over the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2021, 43(3): 885-901. |
游庆龙, 康世昌, 李剑东, 等. 青藏高原气候变化若干前沿科学问题[J]. 冰川冻土, 2021, 43(3): 885-901. | |
9 | Kang Shichang, Guo Wanqin, Zhong Xinyue, et al. Changes in the mountain cryosphere and their impacts and adaptation measures[J]. Advances in Climate Change Research, 2020, 16(2): 143-152. |
康世昌, 郭万钦, 钟歆玥, 等. 全球山地冰冻圈变化、影响与适应[J]. 气候变化研究进展, 2020, 16(2): 143-152. | |
10 | Pritchard H D. Asia’s shrinking glaciers protect large populations from drought stress[J]. Nature, 2019, 569(7758): 649-654. |
11 | Shi Yafeng, Liu Shiyin, Estimation on the response of glaciers in China to the global warming in the 21st century[J]. Chinese Science Bulletin, 2000, 45(7): 668-672. |
12 | Qin Dahe, Yao Tandong, Ding Yongjian, et al. Introduction of cryospheric science[M]. Beijing: Science Press, 2017. |
秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学概论[M]. 北京: 科学出版社, 2017. | |
13 | Su Zhen, Shi Yafeng. Response of monsoonal temperate glaciers to global warming since the Little Ice Age[J]. Quaternary International, 2002, 97: 123-131. |
14 | Li Jijun, Su Zhen. Glaciers in the Hengduan Mountains[M]. Beijing: Science Press, 1996. |
李吉均, 苏珍. 横断山冰川[M]. 北京: 科学出版社, 1996. | |
15 | Zhang Y, Fujita K, Liu S Y, et al. Distribution of debris thickness and its effect on ice melt at Hailuogou glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery[J]. Journal of Glaciology, 2011, 57(206): 1147-1157. |
16 | Zhang Y, Hirabayashi Y, Fujita K, et al. Heterogeneity in supraglacial debris thickness and its role in glacier mass changes of the Mount Gongga[J]. Science China Earth Sciences, 2016, 59(1): 170-184. |
17 | Zhang Y, Hirabayashi Y, Liu S Y. Catchment-scale reconstruction of glacier mass balance using observations and global climate data: case study of the Hailuogou catchment, south-eastern Tibetan Plateau[J]. Journal of Hydrology, 2012, 444: 146-160. |
18 | Yang Wei, Guo Xiaofeng, Yao Tandong, et al. Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations[J]. Climate Dynamics, 2016, 47(3): 805-815. |
19 | Yan Xingguo, Ma Jinzhu, Ma Xiaoyi, et al. Accelerated glacier mass loss with atmospheric changes on Mt. Yulong, Southeastern Tibetan Plateau[J]. Journal of Hydrology, 2021, 603: 126931. |
20 | Wu Kunpeng, Liu Shiyin, Zhu Yu, et al. Dynamics of glacier surface velocity and ice thickness for maritime glaciers in the southeastern Tibetan Plateau[J]. Journal of Hydrology, 2020, 590: 125527. |
21 | Liu Qiao, Liu Shiyin. Progress in the study of englacial and subglacial drainage system of glaciers[J]. Advances in Earth Science, 2012, 27(6): 660-669. |
刘巧, 刘时银. 冰川冰内及冰下水系研究综述[J]. 地球科学进展, 2012, 27(6): 660-669. | |
22 | Cheng Zunlan, Zhu Pingyi, Dang Chao, et al. Hazards of debris flow due to glacier-lake outburst in southeastern Tibet[J]. Journal of Glaciology and Geocryology, 2008, 30(6): 954-959. |
程尊兰, 朱平一, 党超, 等. 藏东南冰湖溃决泥石流灾害及其发展趋势[J]. 冰川冻土, 2008, 30(6): 954-959. | |
23 | Chen Chen, Zhang Limin, Xiao Te, et al. Barrier lake bursting and flood routing in the Yarlung Tsangpo Grand Canyon in October 2018[J]. Journal of Hydrology, 2020, 583: 124603. |
24 | An Baosheng, Wang Weicai, Yang Wei, et al. Process, mechanisms, and early warning of glacier collapse-induced river blocking disasters in the Yarlung Tsangpo Grand Canyon, southeastern Tibetan Plateau[J]. Science of The Total Environment, 2022, 816: 151652. |
25 | Ding Yongjian, Mu Cuicui, Wu Tonghua, et al. Increasing cryospheric hazards in a warming climate[J]. Earth-Science Reviews, 2021, 213: 103500. |
26 | Cui Peng, Guo Xiaojun, Jiang Tianhai, et al. Disaster effect induced by Asian Water Tower change and mitigation strategies[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1313-1321. |
崔鹏, 郭晓军, 姜天海, 等. “亚洲水塔”变化的灾害效应与减灾对策[J]. 中国科学院院刊, 2019, 34(11): 1313-1321. | |
27 | Yang Wei, Yao Tandong, Xu Baiqing, et al. Characteristics of recent temperat glacier fluctuations in the Parlang Zangbo River basin, southeast Tibetan Plateau[J]. Chinese Science Bulletin, 2010, 55(18): 1775-1780. |
杨威, 姚檀栋, 徐柏青, 等. 近期藏东南帕隆藏布流域冰川的变化特征[J]. 科学通报, 2010, 55(18): 1775-1780. | |
28 | Liu Qiao, Zhang Yong. Studies on the dynamics of monsoonal temperate glaciers in Mt. Gongga: a review[J] Mountain Research, 2017, 35(5): 717-726. |
刘巧, 张勇. 贡嘎山海洋型冰川监测与研究: 历史、现状与展望[J]. 山地学报, 2017, 35(5): 717-726. | |
29 | Wu Kunpeng, Liu Shiyin, Zhu Yu, et al. High-resolution monitoring of glacier dynamics based on unmanned aerial vehicle survey in the Meili Snow Mountain[J]. Progress in Geography, 2021, 40(9): 1581-1589. |
吴坤鹏, 刘时银, 朱钰, 等. 基于无人机摄影测量的梅里雪山明永冰川末端表面高程动态监测 [J]. 地理科学进展, 2021, 40(9): 1581-1589. | |
30 | Consortium RGI. Randolph Glacier Inventory: a dataset of global glacier outlines: Version 6.0[R]. Global Land Ice Measurements from Space, Colorado, USA. Digital Media, 2017. DOI: https://doi.org/10.7265/N5-RGI-60 . |
31 | Li Jijun, Zheng Benxing, Yang Xijin, et al. Glaciers in Tibet[M]. Beijing: Science Press, 1986. |
李吉均, 郑本兴, 杨锡金, 等. 西藏冰川[M]. 北京: 科学出版社, 1986. | |
32 | Zhao Fanyu, Long Di, Li Xingdong, et al. Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations[J]. Remote Sensing of Environment, 2022, 270: 112853. |
33 | Zhang Y. Liu S Y, Liu Q,et al. The role of debris cover in catchment runoff: a case study of the Hailuogou catchment, south-eastern Tibetan Plateau[J]. Water, 2019, 11(12): 2601. |
34 | Zhou Yushan, Li Xin, Zheng Donghai, et al. Evolution of geodetic mass balance over the largest lake-terminating glacier in the Tibetan Plateau with a revised radar penetration depth based on multi-source high-resolution satellite data[J]. Remote Sensing of Environment, 2022, 275: 113029. |
35 | Yang Wei, Yao Tandong, Guo Xiaofeng, et al. Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(17): 9579-9594. |
36 | Ward F K. The Himalaya east of the Tsangpo[J]. Geographical Journal, 1934, 84(5): 369-397. |
37 | Ward F K. The snow mountains of Yunnan[J]. Geographical Journal, 1924, 64(3): 222-231. |
38 | Heim A. The glaciation and solifluction of Minya Gongkar[J]. The Geographical Journal, 1936, 87(5): 444-450. |
39 | Cui Zhijiu. Preliminary observations of the modern glaciers of Gongga Mountain: commemorating comrades who heroically sacrificed their lives for the conquest of Gongga Mountain[J]. Acta Geographica Sinica, 1958, 24(3): 318-342. |
崔之久. 贡嘎山现代冰川的初步观察——纪念为征服贡嘎山而英勇牺牲的战友[J]. 地理学报, 1958, 24(3): 318-342. | |
40 | Li Bingyuan, Wang Fubao, Zhang Qingsong. Quaternary geology of Tibet[M]. Beijing: Science Press, 1983. |
李炳元, 王富葆, 张青松. 西藏第四纪地质[M]. 北京: 科学出版社, 1983. | |
41 | Yao Tandong. Glacier climate and environment of the Qinghai-Tibet Plateau: a study on glaciers on the Qinghai-Tibet Plateau in China and Japan in 1989[M]. Beijing: Science Press, 1993. |
姚檀栋. 青藏高原冰川气候与环境: 1989年中日青藏高原冰川考察研究[M]. 北京: 科学出版社, 1993. | |
42 | Liu Shiyin, Shangguan Donghui, Ding Yongjian, et al. Glacier variations since the early 20th Century in the Gangrigabu range, southeast Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2005, 27(1): 55-63. |
刘时银, 上官冬辉, 丁永建, 等. 20世纪初以来青藏高原东南部岗日嘎布山的冰川变化[J]. 冰川冻土, 2005, 27(1): 55-63. | |
43 | Zhong Y, Liu Q, Westoby M, et al. Intensified paraglacial slope failures due to accelerating downwasting of a temperate glacier in Mt. Gongga, southeastern Tibetan Plateau[J]. Earth Surface Dynamics, 2022, 10(1): 23-42. |
44 | Wu Kunpeng, Liu Shiyin, Bao Weijia, et al. Remote sensing monitoring of the glacier change in the Gangrigabu Range, southeast Tibetan Plateau from 1980 through 2015[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 24-34. |
吴坤鹏, 刘时银, 鲍伟佳, 等. 1980—2015年青藏高原东南部岗日嘎布山冰川变化的遥感监测[J]. 冰川冻土, 2017, 39(1): 24-34. | |
45 | Wu Kunpeng, Liu Shiyin, Guo Wanqin. Glacier variation and its response to climate change in the Mount Namjagbarwa from 1980 to 2015[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1115-1125. |
吴坤鹏, 刘时银, 郭万钦. 1980—2015年南迦巴瓦峰地区冰川变化及其对气候变化的响应[J]. 冰川冻土, 2020, 42(4): 1115-1125. | |
46 | Yi S, Song C Q, Heki K, et al. Satellite-observed monthly glacier and snow mass changes in southeast Tibet: implication for substantial meltwater contribution to the Brahmaputra[J]. The Cryosphere, 2020, 14(7): 2267-2281. |
47 | Wang Shijin, Che Yanjun, Pang Hongxi, et al. Accelerated changes of glaciers in the Yulong Snow Mountain, Southeast Qinghai-Tibetan Plateau[J]. Regional Environmental Change, 2020, 20(2): 1-13. |
48 | Sherpa S F, Wagnon P, Brun F, et al. Contrasted surface mass balances of debris-free glaciers observed between the southern and the inner parts of the Everest region (2007—2015)[J]. Journal of Glaciology, 2017, 63(240): 637-651. |
49 | Wagnon P, Brun F, Khadka A, et al. Reanalysing the 2007—19 glaciological mass-balance series of Mera Glacier, Nepal, Central Himalaya, using geodetic mass balance[J]. Journal of Glaciology, 2021, 67(261): 117-125. |
50 | Wang R J, Liu S Y, Shangguan D H, et al. Spatial heterogeneity in glacier mass-balance sensitivity across High Mountain Asia[J]. Water, 2019, 11(4): 776. |
51 | Su Zhen, Song Guoping, Cao Zhentang. Maritime characteristics of Hailuogou glacier in the Gongga Mountains[J]. Journal of Glaciology and Geocryology, 1996, 18(): 51-59. |
苏珍, 宋国平,曹真堂. 贡嘎山海螺沟冰川的海洋性特征[J]. 冰川冻土, 1996, 18(): 51-59. | |
52 | He Yuanqing, Zhang Zhonglin, Yao Tandong, et al. Modern changes of climate and glaciers in China’s monsoonal temperate-glacier region[J]. Acta Geographica Sinica, 2003, 58(4): 550-558. |
何元庆, 张忠林, 姚檀栋, 等. 中国季风温冰川区近代气候变化与冰川动态[J]. 地理学报, 2003, 58(4): 550-558. | |
53 | Liu X W, Xu Z X, Yang H, et al. Responses of the glacier mass balance to climate change in the Tibetan Plateau during 1975—2013[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(7): e2019JD032132. |
54 | Ding Baohong, Yang Kun, Yang Wei, et al. Development of a Water and Enthalpy Budget-based Glacier mass balance Model (WEB-GM) and its preliminary validation[J]. Water Resources Research, 2017, 53(4): 3146-3178. |
55 | Yang Wei, Yao Tandong, Xu Baiqing, et al. Quick ice mass loss and abrupt retreat of the maritime glaciers in the Kangri Karpo Mountains, southeast Tibetan Plateau[J]. Chinese Science Bulletin, 2008, 53(16): 2547-2551. |
56 | Yang Wei, Guo Xiaofeng, Yao Tandong, et al. Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier[J]. Journal of Geophysical Research: Atmospheres, 2011, 116: D14116. |
57 | Wu Kunpeng, Liu Shiyin, Jiang Zongli, et al. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories[J]. The Cryosphere, 2018, 12(1): 103-121. |
58 | Zhao L Y, Tian L D, Zwinger T, et al. Numerical simulations of Gurenhekou glacier on the Tibetan Plateau[J]. Journal of Glaciology, 2014, 60(219): 71-82. |
59 | Acharya A, Kayastha R B. Mass and energy balance estimation of Yala glacier (2011—2017), Langtang valley, Nepal[J]. Water, 2018, 11(1): 6. |
60 | Ageta Y, Ohata T, Tanaka Y, et al. Mass balance of Glacier AX010 in Shorong Himal, East Nepal during the summer monsoon season glaciological expedition of Nepal, contribution No. 66[J]. Journal of the Japanese Society of Snow and Ice, 1980, 41(Special): 34-41. |
61 | Liu Shiyin, Zhang Yong, Liu Qiao, et al. Study on the impact of climate change on glacier and its risk[M]. Beijing: Science Press, 2017. |
刘时银, 张勇, 刘巧, 等. 气候变化对冰川影响与风险研究[M]. 北京: 科学出版社, 2017. | |
62 | Zhao Huaqiu, Wang Xin, Zhao Xuanru, et al. Analysis of glacier changes in China from 2008 to 2018[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 976-986. |
赵华秋, 王欣, 赵轩茹, 等. 2008—2018年中国冰川变化分析[J]. 冰川冻土, 2021, 43(4): 976-986. | |
63 | Ji Qin, Liu Rui, Yang Taibao. Glacier variations in the Himalayas during 1990—2015[J]. Geographical Research, 2020, 39(10): 2403-2414. |
冀琴, 刘睿, 杨太保. 1990—2015年喜马拉雅山冰川变化的遥感监测[J]. 地理研究, 2020, 39(10): 2403-2414. | |
64 | Guillet G, King O, Lv M, et al. A regionally resolved inventory of High Mountain Asia surge-type glaciers, derived from a multi-factor remote sensing approach[J]. The Cryosphere, 2022, 16(2): 603-623. |
65 | Cuffey K M, Paterson W S B. The physics of glaciers[M]. Academic Press, 2010. |
66 | Qin Dahe, Yao Tandong, Ding Yongjian, et al. Cryosphere science dictionary[M]. Beijing: China Meteorological Press, 2016. |
秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学词典[M]. 北京: 气象出版社, 2016. | |
67 | Haeberli W, Whiteman C. Snow and ice-related hazards, risks, and disasters: a general framework[M]. Academic Press, 2015: 1-34. |
68 | Brun F, Berthier E, Wagnon P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016[J]. Nature geoscience, 2017, 10(9): 668-673. |
69 | Hugonnet R, McNabb R, Berthier E, et al. Accelerated global glacier mass loss in the early twenty-first century[J]. Nature, 2021, 592(7856): 726-731. |
70 | Jakob L, Gourmelen N, Ewart M, et al. Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019[J]. The Cryosphere, 2021, 15(4): 1845-1862. |
71 | Nuimura T, Fujita K, Yamaguchi S, et al. Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992—2008[J]. Journal of Glaciology, 2012, 58(210): 648-656. |
72 | Gardner A S, Moholdt G, Cogley J G, et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009[J]. Science, 2013, 340(6134): 852-857. |
73 | King A D, Karoly D J. Climate extremes in Europe at 1.5 and 2 degrees of global warming[J]. Environmental Research Letters, 2017, 12(11): 114031. |
74 | Ren S T, Menenti M, Jia L, et al. Glacier mass balance in the Nyainqentanglha Mountains between 2000 and 2017 retrieved from ZiYuan-3 stereo images and the SRTM DEM[J]. Remote Sensing, 2020, 12(5): 864. |
75 | Neckel N, Loibl D, Rankl M. Recent slowdown and thinning of debris-covered glaciers in south-eastern Tibet[J]. Earth and Planetary Science Letters, 2017, 464: 95-102. |
76 | Shean D E, Bhushan S, Montesano P, et al. A systematic, regional assessment of high mountain Asia glacier mass balance[J]. Frontiers in Earth Science, 2020, 7: 363. |
77 | Kääb A, Treichler D, Nuth C, et al. Brief communication: contending estimates of 2003—2008 glacier mass balance over the Pamir-Karakoram-Himalaya[J]. The Cryosphere, 2015, 9(2): 557-564. |
78 | Wu Kunpeng, Liu Shiyin, Jiang Zongli, et al. Glacier mass balance over the central Nyainqentanglha Range during recent decades derived from remote-sensing data[J]. Journal of Glaciology, 2019, 65(251): 422-439. |
79 | WGMS: Fluctuations of glaciers database, world glacier monitoring service[DB]. Zurich, Switzerland, 2021. |
80 | Kaser G, Cogley J G, Dyurgerov M B, et al. Mass balance of glaciers and ice caps: Consensus estimates for 1961—2004[J]. Geophysical Research Letters, 2006, 33: 1-5. |
81 | Gulev S K, Thorne P W, Ahn J, et al. Changing state of the climate system[J]. Climate change, 2021: 287-422. |
82 | Morice C P, Kennedy J J, Rayner N A, et al. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set[J]. Journal of Geophysical Research: Atmospheres, 2012, 117: D08101. |
83 | Maurer J M, Schaefer J M, Rupper S, et al. Acceleration of ice loss across the Himalayas over the past 40 years[J]. Science Advances, 2019, 5(6): eaav7266. |
84 | Yang Kun, Wu Hui, Qin Jun, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review[J]. Global and Planetary Change, 2014, 112: 79-91. |
85 | Fujita K. Effect of precipitation seasonality on climatic sensitivity of glacier mass balance[J]. Earth and Planetary Science Letters, 2008, 276: 14-19. |
86 | Ohmura A. Physical basis for the temperature-based melt-index method[J]. Journal of Applied Meteorology, 2001, 40(4): 753-761. |
87 | Mölg T, Maussion F, Yang W, et al. The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier[J]. The Cryosphere, 2012, 6(6): 1445-1461. |
88 | Du Jiankuo, He Yuanqing, Li Shuang, et al. Mass balance of a typical monsoonal temperate glacier in Hengduan Mountains region[J]. Acta Geographica Sinica, 2015, 70(9): 1415-1422. |
杜建括, 何元庆, 李双, 等. 横断山区典型海洋型冰川物质平衡研究[J]. 地理学报, 2015, 70(9): 1415-1422. | |
89 | Thompson L G, Yao T D, Davis M E, et al. Ice core records of climate variability on the Third Pole with emphasis on the Guliya ice cap, western Kunlun Mountains[J]. Quaternary Science Reviews, 2018, 188: 1-14. |
90 | Zhang Yong, Liu Shiyin, Wang Xin. Debris-cover effect in the Tibetan Plateau and surroundings: a review[J]. Journal of Glaciology and Geocryology, 2022, 44(3): 900-913. |
张勇, 刘时银, 王欣. 青藏高原及周边冰川区表碛影响研究进展[J]. 冰川冻土, 2022, 44(3): 900-913. | |
91 | Yang Wei, Yao Tandong, Xu Baiqing, et al. Influence of supraglacial debris on summer ablation and mass balance in the 24K Glacier, southeast Tibetan Plateau[J]. Geografiska Annaler: Series A, Physical Geography, 2010, 92(3): 353-360. |
92 | Benn D I, Bolch T, Hands K, et al. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards[J]. Earth-Science Reviews, 2012, 114(1/2): 156-174. |
93 | Miles E S, Willis I, Buri P, et al. Surface pond energy absorption across four Himalayan glaciers accounts for 1/8 of total catchment ice loss[J]. Geophysical Research Letters, 2018, 45(19): 10464-10473. |
94 | Buri P, Miles E S, Steiner J F, et al. Supraglacial ice cliffs can substantially increase the mass loss of debris‐covered glaciers[J]. Geophysical Research Letters, 2021, 48(6): e2020GL092150. |
95 | Benn D I, Warren C R, Mottram R H. Calving processes and the dynamics of calving glaciers[J]. Earth-Science Reviews, 2007, 82(3/4): 143-179. |
96 | Bassis J N, Ma Y. Evolution of basal crevasses links ice shelf stability to ocean forcing[J]. Earth and Planetary Science Letters, 2015, 409: 203-211. |
97 | Han Haidong, Liu Shiyin, Ding Yongjian, et al. Investigation of ice cliffs in the debris-covered area of Koxkar Glacier, Tian⁃shan[J]. Journal of Glaciology and Geocryology, 2006, 28(6): 879-884. |
韩海东, 刘时银, 丁永建, 等. 科其喀尔冰川表碛区冰崖形态调查[J]. 冰川冻土, 2006, 28(6): 879-884. | |
98 | Sakai A, Fujita K. Formation conditions of supraglacial lakes on debris-covered glaciers in the Himalayas[J]. Journal of Glaciology, 2010, 56(195):177-181. |
99 | Sakai A, Nakawo M, Fujita K. Distribution characteristics and energy balance of ice cliffs on debris-covered glaciers, Nepal Himalaya[J]. Arctic, Antarctic, and Alpine Research, 2002, 34(1):12-19. |
100 | Reid T D, Brock B W. An energy-balance model for debris-covered glaciers including heat conduction through the debris layer[J]. Journal of Glaciology, 2010, 56(199): 903-916. |
101 | Anderson L S, Armstrong W H, Anderson R S, et al. The causes of debris-covered glacier thinning: evidence for the importance of ice dynamics from Kennicott Glacier, Alaska[J]. Frontiers in Earth Science, 2021: 723. |
102 | Gu Ju, Zhang Yong, Liu Shiyin, et al. Research on estimation methods of glacier basal sliding on the Tibetan Plateau: progress, problems and prospects[J]. Advances in Earth Science, 2021, 36(3): 307-316. |
顾菊, 张勇, 刘时银, 等. 青藏高原冰川底部滑动估算方法研究: 进展、问题与展望[J]. 地球科学进展, 2021, 36(3): 307-316. | |
103 | Stenborg T. Studies of the internal drainage of glaciers[J]. Geografiska Annaler: Series A, Physical Geography, 1969, 51A(1/2): 13-41. |
104 | Fountain A G, Walder J S. Water flow through temperate glaciers[J]. Reviews of Geophysics, 1998, 36(3): 299-328. |
105 | Fountain A G, Jacobel R W, Schlichting R, et al. Fractures as the main pathways of water flow in temperate glaciers[J]. Nature, 2005, 433(7026): 618-621. |
106 | Nienow P, Sharp M, Willis I. Temporal switching between englacial and subglacial drainage pathways: dye tracer evidence from the Haut Glacier d’Arolla, Switzerland[J]. Geografiska Annaler: Series A, Physical Geography, 1996, 78(1): 51-60. |
107 | Church G, Bauder A, Grab M, et al. Ground-penetrating radar imaging reveals glacier’s drainage network in 3D[J]. The Cryosphere, 2021, 15(8): 3975-3988. |
108 | Iken A. The effect of the subglacial water pressure on the sliding velocity of a glacier in an idealized numerical model[J]. Journal of Glaciology, 1981, 27(97): 407-421. |
109 | Eyles N. The role of meltwater in glacial processes[J]. Sedimentary Geology, 2006, 190(1): 257-268. |
110 | Liu Guoxiang, Zhang Bo, Zhang Rui, et al. Monitoring Dynamics of Hailuogou glacier and the secondary landslide disasters based on combination of satellite SAR and Ground-Based SAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 980-995. |
刘国祥, 张波, 张瑞, 等. 联合卫星SAR和地基SAR的海螺沟冰川动态变化及次生滑坡灾害监测[J]. 武汉大学学报(信息科学版), 2019, 44(7): 980-995. | |
111 | Song C Q, Sheng Y W, Wang J D, et al. Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas[J]. Geomorphology, 2017, 280: 30-38. |
112 | King O, Bhattacharya A, Bhambri R, et al. Glacial lakes exacerbate Himalayan glacier mass loss[J]. Scientific Reports, 2019, 9(1): 1-9. |
113 | Benn D I, Åström J A. Calving glaciers and ice shelves[J]. Advances in Physics: X, 2018, 3(1): 1513819. |
114 | Cook S J, Christoffersen P, Todd J, et al. Coupled modelling of subglacial hydrology and calving-front melting at Store Glacier, West Greenland[J]. The Cryosphere, 2020, 14(3): 905-924. |
115 | Wang X, Guo X Y, Yang C D, et al. Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images[J]. Earth System Science Data, 2020, 12(3): 2169-2182. |
116 | Li Gang, Li Yu, Lin Hui, et al. Two periods of geodetic glacier mass balance at Eastern Nyainqentanglha derived from multi-platform bistatic SAR interferometry[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 104: 102541. |
[1] | 车彦军, 陈丽花, 谷来磊, 张明军, 曹昀, 吴佳康, 赖彦怡. 东昆仑木孜塔格峰地区冰湖演变与冰川物质亏损[J]. 冰川冻土, 2023, 45(4): 1254-1265. |
[2] | 薛娇, 姚晓军, 张聪, 周苏刚, 褚馨德. 表碛覆盖型冰川的提取方法及变化[J]. 冰川冻土, 2022, 44(5): 1653-1664. |
[3] | 李英奎, 杨玮琳, 陈鑫, 刘强, 许向科. 冰川模型及其在古冰川模拟研究中的应用[J]. 冰川冻土, 2022, 44(4): 1231-1247. |
[4] | 魏俊锋, 张特, 张勇, 王欣, 蒋宗立, 郑亚杰. 入湖冰川物质平衡序列重建与分析——以喜马拉雅山北坡龙巴萨巴冰川为例[J]. 冰川冻土, 2022, 44(3): 914-929. |
[5] | 冯紫荆, 何天豪, 汪少勇, 何晓波, 高红凯. 反照率对冬克玛底冰川径流及物质平衡模拟影响研究[J]. 冰川冻土, 2022, 44(3): 1053-1062. |
[6] | 骆建伟, 柯长青, 喻薛凝. 2000—2020年兴都库什东部冰川区物质平衡变化及其影响因素[J]. 冰川冻土, 2022, 44(1): 159-170. |
[7] | 张太刚, 高坛光, 刁文钦, 张玉兰. 祁连山区雪冰反照率变化及其对冰川物质平衡的影响[J]. 冰川冻土, 2021, 43(1): 145-157. |
[8] | 贾玉峰, 李忠勤, 金爽, 徐春海, 张明军, 邓海军, 梁鹏斌, 刘爽爽. 1959-2017年天山乌鲁木齐河源1号冰川流域径流及其组分变化[J]. 冰川冻土, 2019, 41(6): 1302-1312. |
[9] | 杨晓辉, 赵井东, 韩惠. 1972-2016年东天山哈尔里克山地区冰川物质平衡研究[J]. 冰川冻土, 2019, 41(1): 1-11. |
[10] | 肖菁, 刘耕年, 聂振宇, 陈艺鑫, 彭旭, 刘蓓蓓, 韩业松, 崔之久. 天山末次冰期以来干旱化过程的冰川证据[J]. 冰川冻土, 2018, 40(3): 434-447. |
[11] | 李吉均, 周尚哲. 极海洋型冰川是什么冰川——与景才瑞先生商榷[J]. 冰川冻土, 2018, 40(1): 1-6. |
[12] | 何海迪, 李忠勤, 王璞玉, 张明军, 王林. 近50年来北极斯瓦尔巴地区冰川物质平衡变化特征[J]. 冰川冻土, 2017, 39(4): 701-709. |
[13] | 苏勃, 李忠勤, 张明军, 郭蓉, 孙美平, 车彦军, 应雪. 大陆型冰川与海洋型冰川物质平衡对比研究——以天山和阿尔卑斯山典型冰川为例[J]. 冰川冻土, 2015, 37(5): 1131-1140. |
[14] | 方潇雨, 李忠勤, Bernd Wuennemann, 高抒, 陈仁升. 冰川物质平衡模式及其对比研究——以祁连山黑河流域十一冰川研究为例[J]. 冰川冻土, 2015, 37(2): 336-350. |
[15] | 张健, 何晓波, 叶柏生, 吴锦奎. 近期小冬克玛底冰川物质平衡变化及其影响因素分析[J]. 冰川冻土, 2013, 35(2): 263-271. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000