冰川冻土 ›› 2022, Vol. 44 ›› Issue (4): 1382-1394.doi: 10.7522/j.issn.1000-0240.2022.0124
师璐璐1(), 陈剑1(
), 陈瑞琛1, 崔之久2, 米东东1, 吕明升1, 刘蓓蓓3
收稿日期:
2022-05-31
修回日期:
2022-08-13
出版日期:
2022-08-25
发布日期:
2022-09-14
通讯作者:
陈剑
E-mail:2002200022@cugb.edu.cn;jianchen@cugb.edu.cn
作者简介:
师璐璐,硕士研究生,主要从事工程地质与地质灾害防治研究. E-mail: 2002200022@cugb.edu.cn
基金资助:
Lulu SHI1(), Jian CHEN1(
), Ruichen CHEN1, Zhijiu CUI2, Dongdong MI1, Mingsheng LÜ1, Beibei LIU3
Received:
2022-05-31
Revised:
2022-08-13
Online:
2022-08-25
Published:
2022-09-14
Contact:
Jian CHEN
E-mail:2002200022@cugb.edu.cn;jianchen@cugb.edu.cn
摘要:
2004年3月12日,云南省丽江市玉龙雪山南坡发生了较大规模的冰-岩碎屑流型高速远程滑坡。位于斜坡顶部(高程为4 337~5 350 m)的岩体和冰川块体沿着高陡岩壁向下滑动,在峡谷地形控制下于干河坝内形成体积约11.2×106 m3的滑坡堆积体。本文通过遥感影像分析和现场调查,对干河坝冰-岩碎屑流的地貌与堆积特征进行了详细研究,初步阐释了干河坝冰-岩碎屑流发生的成因机制和运动过程。研究结果表明,节理裂隙发育、源区冻融作用加剧和历史地震效应是此次地震的诱发因素。地形的坡度变化特征、滑体表面“乘船石”结构及内部岩屑的定向排列表明滑坡的运动过程可分为碰撞破碎阶段和扩散堆积阶段。滑坡堆积区广泛分布的“冰川乳坑”和冰水沉积物暗示堆积体底部松散沉积物减阻或是干河坝冰-岩碎屑流具有远程效应的有利因素。深入理解干河坝冰-岩碎屑流的地貌特征及运动学过程,对揭示高速远程滑坡的超强运动机理具有重要的理论意义,同时对我国西部高寒山区大型滑坡灾害的预测预警亦具有现实意义。
中图分类号:
师璐璐, 陈剑, 陈瑞琛, 崔之久, 米东东, 吕明升, 刘蓓蓓. 丽江干河坝冰-岩碎屑流地貌、沉积特征与成因机制分析[J]. 冰川冻土, 2022, 44(4): 1382-1394.
Lulu SHI, Jian CHEN, Ruichen CHEN, Zhijiu CUI, Dongdong MI, Mingsheng LÜ, Beibei LIU. Geomorphological characteristics and failure mechanism of Ganheba rock-ice avalanche in Lijiang[J]. Journal of Glaciology and Geocryology, 2022, 44(4): 1382-1394.
1 | Coe J A, Bessette-Kirton E K, Geertsema M. Increasing rock-avalanche size and mobility in Glacier Bay National Park and Preserve, Alaska detected from 1984 to 2016 Landsat imagery[J]. Landslides, 2018, 15(3): 393-407. |
2 | Bessette-Kirton E K, Coe J A. A 36-year record of rock avalanches in the Saint Elias Mountains of Alaska, with implications for future hazards[J]. Frontiers in Earth Science, 2020, 8: 293. |
3 | Fan X, Yunus A P, Yang Y H, et al. Imminent threat of rock-ice avalanches in High Mountain Asia[J]. Science of The Total Environment, 2022, 836: 155380. |
4 | Schneider D, Huggel C, Haeberli W, et al. Unraveling driving factors for large rock-ice avalanche mobility[J]. Earth Surface Processes and Landforms, 2011, 36(14): 1948-1966. |
5 | Yang Qingqing, Su Zhiman, Chen Luozeng, et al. Flume these on influence of ice to mobility of rock-ice avalanche[J]. Journal of Engineering Geology, 2015, 23(6): 1117-1126. |
杨情情, 苏志满, 陈锣增, 等. 冰屑对冰-岩碎屑流运动特性影响作用的初步分析[J]. 工程地质学报, 2015, 23(6): 1117-1126. | |
6 | Yang Qingqing, Zheng Xinyu, Su Zhiman, et al. Review on rock-ice avalanches[J]. Earth Science, 2022, 47(3): 935-949. |
杨情情, 郑欣玉, 苏志满, 等. 高速远程冰-岩碎屑流研究进展[J]. 地球科学, 2022, 47(3): 935-949. | |
7 | Zhou J, Cui P, Hao M. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China[J]. Landslides, 2016, 13(1): 39-54. |
8 | Schaub Y, Huggel C, Cochachin A. Ice-avalanche scenario elaboration and uncertainty propagation in numerical simulation of rock-/ice-avalanche-induced impact waves at Mount Hualcán and Lake 513, Peru[J]. Landslides, 2016, 13(6): 1445-1459. |
9 | Hu K, Zhang X, You Y, et al. Landslides and dammed lakes triggered by the 2017 Ms6.9 Milin earthquake in the Tsangpo gorge[J]. Landslides, 2019, 16(5): 993-1001. |
10 | Cheng Qiangong, Zhang Zhuoyuan, Huang Ruiqiu. Study on dynamics of rock avalanches state of the art report[J]. Journal of Mountain Science, 2007, 25(1): 72-84. |
程谦恭, 张倬元, 黄润秋. 高速远程崩滑动力学的研究现状及发展趋势[J]. 山地学报, 2007, 25(1): 72-84. | |
11 | Wang Yufeng, Lin Qiwen, Li Kun, et al. Review on rock avalanche dynamics[J]. Journal of Earth Sciences and Enviroment, 2021, 43(1): 164-181. |
王玉峰, 林棋文, 李坤, 等. 高速远程滑坡动力学研究进展[J]. 地球科学与环境学报, 2021, 43(1): 164-181. | |
12 | Chen Jian, Chen Ruichen, Cui Zhijiu. Research progress on the morphology and sedimentology of long runout landslides. [J]. Earth Science Frontiers, 2021, 28(4): 349-360. |
陈剑, 陈瑞琛, 崔之久. 高速远程滑坡的地貌学与沉积学研究进展[J]. 地学前缘, 2021, 28(4): 349-360. | |
13 | Evans S G. Catastrophic rock avalanches in glacial environments[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989, 26(6): 337. |
14 | Sosio R, Crosta G B, Hungr O. Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps)[J]. Engineering Geology, 2008, 100(1): 11-26. |
15 | Sosio R. Rock-snow-ice avalanches[M]//Davies T, Rosser N, Shroder J F. Landslide hazards, risks, and disasters. 2nd ed. Elsevier, 2015: 199-247. |
16 | Hewitt K. Catastrophic landslide deposits in the Karakoram Himalaya[J]. Science, 1988, 242(4875): 64-67. |
17 | Hewitt K. Quaternary moraines vs catastrophic rock avalanches in the Karakoram Himalaya, northern Pakistan[J]. Quaternary Research, 1999, 51(3): 220-237. |
18 | Deline P. Interactions between rock avalanches and glaciers in the Mont Blanc massif during the late Holocene[J]. Quaternary Science Reviews, 2009, 28(11): 1070-1083. |
19 | Sosio R, Crosta G B, Chen J H, et al. Modelling rock avalanche propagation onto glaciers[J]. Quaternary Science Reviews, 2012, 47: 23-40. |
20 | Bottino G, Chiarle M, Joly A, et al. Modelling rock avalanches and their relation to permafrost degradation in glacial environments[J]. Permafrost and Periglacial Processes, 2002, 13(4): 283-288. |
21 | Delaney K B, Evans S G. The 1997 Mount Munday landslide (British Columbia) and the behaviour of rock avalanches on glacier surfaces[J]. Landslides, 2014, 11(6): 1019-1036. |
22 | Schneider D, Kaitna R, Dietrich W E, et al. Frictional behavior of granular gravel-ice mixtures in vertically rotating drum experiments and implications for rock-ice avalanches[J]. Cold Regions Science and Technology, 2011, 69(1): 70-90. |
23 | Yang Q, Su Z, Cheng Q, et al. High mobility of rock-ice avalanches: insights from small flume tests of gravel-ice mixtures[J]. Engineering Geology, 2019, 260: 105260. |
24 | De Blasio F V. Friction and dynamics of rock avalanches travelling on glaciers[J]. Geomorphology, 2014, 213: 88-98. |
25 | McSaveney M J. Sherman glacier rock avalanche, Alaska, U.S.A.[M]//Voight B. Developments in geotechnical engineering. Elsevier, 1978: 197-258. |
26 | McSaveney M J. Recent rockfalls and rock avalanches in Mount Cook National Park, New Zealand[M]//Evans S G, Degraff J V. Catastrophic landslides. Geological Society of America, 2002: 35-70. |
27 | Evans S G, Delaney K B. Catastrophic mass flows in the mountain glacial environment[M]//Shroder J F, Haeberli W, Whiteman C. Snow and ice-related hazards, risks, and disasters. Boston: Academic Press, 2015: 563-606. |
28 | Pudasaini S P, Krautblatter M. A two-phase mechanical model for rock-ice avalanches[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(10): 2272-2290. |
29 | Liu Wei. Study of the characteristics of huge scale-superi highspeed-long distance landslide chain in Yigong, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2002, 3(13): 8-18. |
刘伟. 西藏易贡巨型超高速远程滑坡地质灾害链特征研析[J]. 中国地质灾害与防治学报, 2002, 3(13): 8-18. | |
30 | Liu Chuanzheng, Jietang Lü, Tong Liqiang, et al. Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet[J]. Geology in China, 2019, 46(2): 219-234. |
刘传正, 吕杰堂, 童立强, 等. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究[J]. 中国地质, 2019, 46(2): 219-234. | |
31 | Yao Tandong, Zhang Yinsheng, Pu Jianchen, et al. Twenty-year observations of glacier hydrology and meteorology at the Tanggula pass of the Tibetan Plateau: significance and achievements[J]. Journal of Glaciology and Geocryology, 2010, 32(6): 1152-1161. |
姚檀栋, 张寅生, 蒲健辰, 等. 青藏高原唐古拉山口冰川、水文和气候学观测20 a: 意义与贡献[J]. 冰川冻土, 2010, 32(6): 1152-1161. | |
32 | Cui Zhijiu. Diamicton and environment[M]. Shijiazhuang: Hebei Science and Technology Press, 2013. |
崔之久. 混杂堆积与环境[M]. 石家庄: 河北科学技术出版社, 2013: 534-535. | |
33 | He Ze, He Yuanqing, Zhang Zhigang, et al. OSL dating of the Quaternary glacial sedimentary sequences at Mt. Yulong, China[J]. Journal of Glaciology and Geocryology, 2016, 38(6): 1544-1552. |
何则, 何元庆, 张志刚, 等. 玉龙雪山冰川沉积序列OSL定年[J]. 冰川冻土, 2016, 38(6): 1544-1552. | |
34 | Han Zhujun, Guo Shunmin, Xiang Hongfa, et al. Seismotectonic emvironment of occurring the Febuary 3, 1996 Lijiang M=7.0 Earthquake, Yunnan Procince[J]. Acta Seismologica Sinica, 2004, 26(4): 410-418. |
韩竹军, 虢顺民, 向宏发, 等. 1996年2月3日云南丽江7.0级地震发生的构造环境[J]. 地震学报, 2004, 26(4): 410-418. | |
35 | Du Jiankuo, Xin Huijuan, He Yuanqing, et al. Response of modern monsoon temperate glacier to climate change in Yulong Mountain[J]. Scientia Geographica Sinica, 2013, 33(7): 890-896. |
杜建括, 辛惠娟, 何元庆, 等. 玉龙雪山现代季风温冰川对气候变化的响应[J]. 地理科学, 2013, 33(7): 890-896. | |
36 | Xin Huijuan, He Yuanqing, Zhang Tao, et al. The features of climate variation and glacier response in Mt. Yulong, southeastern Tibetan Plateau[J]. Advances in Earth Science, 2013, 28(11): 1257-1268. |
辛惠娟, 何元庆, 张涛, 等. 青藏高原东南缘丽江玉龙雪山气候变化特征及其对冰川变化的影响[J]. 地球科学进展, 2013, 28(11): 1257-1268. | |
37 | He Yuanqing, Zhang Dian. Climatic warming is the major reason for glacier retreat on Mt. Yulong, China[J]. Journal of Glaciology and Geocryology, 2004, 26(2): 230-231. |
何元庆, 章典. 气候变暖是玉龙雪山冰川退缩的主要原因[J]. 冰川冻土, 2004, 26(2): 230-231. | |
38 | Ming Qingzhong. The Quaternary glaciation in Yu-long Mountains[J]. Journal of Yunnan Normal University (Natural Sciences Edition), 1996, 16(3): 94-104. |
明庆忠. 滇西北玉龙山第四纪冰川作用的探讨[J]. 云南师范大学学报(自然科学版), 1996, 16(3): 94-104. | |
39 | Wu Haizhong, Zhang Yongshuang, Hu Daogong, et al. Exploration of the late quaternary normal faulting and its kinetic mechanism in the Haba-Yulong Xueshan east rift, Northwest Yunnan[J]. Science in China: Series D Earth Sciences, 2008, 38(11): 1361-1375. |
吴中海, 张永双, 胡道功, 等. 滇西北哈巴-玉龙雪山东麓断裂的晚第四纪正断层作用及其动力学机制探讨[J]. 中国科学(D辑: 地球科学), 2008, 38(11): 1361-1375. | |
40 | Zhang Ningning, He Yuanqing, He Xianzhong, et al. The analysis of icefall at Mt. Yulong[J]. Journal of Mountain Science, 2007, 25(4): 412-418. |
张宁宁, 何元庆, 和献中, 等. 玉龙雪山冰川崩塌成因分析[J]. 山地学报, 2007, 25(4): 412-418. | |
41 | Ming Qingzhong, Jin Cairui. Neotectonic movement in the Yulong Mountains[J]. Journal of Central China Normal University (Natural Sciences), 1991, 25(2): 97-101. |
明庆忠, 景才瑞. 滇西北玉龙山新构造运动研究[J]. 华中师范大学学报(自然科学版), 1991, 25(2): 97-101. | |
42 | Deline P, Chiarle M, Mortara G. The frontal ice avalanche of Frebouge Glacier (Mont Blanc Massif, Valley of Aosta, NW Italy) on 18 September 2002[J]. Geografia Fisica e Dinamica Quaternaria, 2002, 25: 101-104. |
43 | Shugar D H, Clague J J. The sedimentology and geomorphology of rock avalanche deposits on glaciers[J]. Sedimentology, 2011, 58(7): 1762-1783. |
44 | Hungr O, Evans S. Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism[J]. GSA Bulletin, 2004, 116(9/10): 1240-1252. |
45 | Dufresne A, Wolken G J, Hibert C, et al. The 2016 Lamplugh rock avalanche, Alaska: deposit structures and emplacement dynamics[J]. Landslides, 2019, 16(12): 2301-2319. |
46 | Li Jiachun, Meng Xiangrui, Hu Shunzhong, et al. Susceptibility assessment of post-earthquake landslide and timeliness research[J/OL]. Journal of China West Normal University (Natural Sciences), 2022: 1-11. [2022-09-03]. . |
李佳春, 孟祥瑞, 胡顺忠, 等. 震后滑坡易发性评价及其时效性研究[J]. 西华师范大学学报(自然科学版), 2022: 1-11. [2022-09-03]. . | |
47 | Fan X, Scaringi G, Korup O, et al. Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts[J]. Reviews of Geophysics, 2019, 57(2): 421-503. |
48 | Petrakov D A, Chernomorets S S, Evans S G, et al. Catastrophic glacial multi-phase mass movements: a special type of glacial hazard[C]//Advances in Geosciences. Copernicus GmbH, 2008: 211-218. |
49 | Dunning S A, Mitchell W A, Rosser N J, et al. The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir Earthquake of 8 October 2005[J]. Engineering Geology, 2007, 93(3/4): 130-144. |
50 | Huangfu Gang, Shi Shaoxian, Su Youjin, et al. Study on seismicity in Yunnan in the 20th century[J]. Journal of Seismological Research, 2000, 23(1): 1-9. |
皇甫岗, 石绍先, 苏有锦. 20世纪云南地震活动研究[J]. 地震研究, 2000, 23(1): 1-9. | |
51 | Tang Chuan, Huang Chuxing, Wan Ye. Lijiang earthquake and the incuced rockfalls and slumps in Yunnan[J]. Journal of Natural Disasters, 1997, 6(3): 78-86. |
唐川, 黄楚兴, 万晔. 云南省丽江大地震及其诱发的崩塌滑坡灾害特征[J]. 自然灾害学报, 1997, 6(3): 78-86. | |
52 | Yin Gongming, Su Gang, Ding Rui, et al. Kinematic property of the eastern piedmont fault of Yulong Mountains and its implication for geomorphology in Yunnan, southwest of China[J]. Quaternary Sciences, 2017, 37(2): 250-259. |
尹功明, 苏刚, 丁锐, 等. 云南玉龙雪山东麓断层的运动性质及其地貌意义[J]. 第四纪研究, 2017, 37(2): 250-259. | |
53 | Fischer L, Kaeaeb A, Huggel C, et al. Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face[J]. Natural Hazards and Earth System Sciences, 2006, 6(5): 761-772. |
54 | Du Jiankuo. The research of glacier change in the Yulong Snow Mountains based on RS and observation data[D]. Lanzhou: Lanzhou University, 2011. |
杜建括. 基于遥感与实测的玉龙雪山冰川变化[D]. 兰州: 兰州大学, 2011. | |
55 | Gruber S, Haeberli W. Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change[J]. Journal of Geophysical Research: Earth Surface, 2007, 112: F02S18. |
56 | Hasler A, Gruber S, Beutel J. Kinematics of steep bedrock permafrost[J]. Journal of Geophysical Research: Earth Surface, 2012, 117: F01016. |
57 | Faillettaz J, Funk M, Vincent C. Avalanching glacier instabilities: review on processes and early warning perspectives[J]. Reviews of Geophysics, 2015, 53(2): 203-224. |
58 | Strom A, Li L, Lan H. Rock avalanche mobility: optimal characterization and the effects of confinement[J]. Landslides, 2019, 16(8): 1437-1452. |
59 | Manzella I, Labiouse V. Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches[J]. Engineering Geology, 2009, 109(1/2): 146-158. |
60 | Manzella I, Labiouse V. Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation[J]. Landslides, 2013, 10(1): 23-36. |
61 | Zeng Q, Zhu J, Liao L, et al. High mobility of the channelized ancient Linka rock avalanche within the Bangong-Nujiang suture zone, SE Tibetan Plateau[J]. Engineering Geology, 2021, 282: 105999. |
62 | Hu Xiaobo, Fan Xiaoyi, Tian Shujun, et al. Influence of channel deflection on the movement of a flowing landslide[J]. Mountain Research, 2019(3): 371-381. |
胡晓波, 樊晓一, 田述军. 沟道偏转地形对滑坡碎屑流运动的影响研究[J]. 山地学报, 2019, 37(3): 371-381. | |
63 | Imre B, Laue J, Springman S M. Fractal fragmentation of rocks within sturzstroms: insight derived from physical experiments within the ETH geotechnical drum centrifuge[J]. Granular Matter, 2010, 12(3): 267-285. |
[1] | 张鹏,孙鸿儒,贾丙瑞. 积雪变化对中国森林凋落物分解影响研究进展[J]. 冰川冻土, 2021, 43(6): 1840-1847. |
[2] | 焦志平,江利明,牛富俊,郭瑞,周志伟. 藏东冻土区滑坡形变时序InSAR监测分析[J]. 冰川冻土, 2021, 43(5): 1312-1322. |
[3] | 赵容舟,梁二雷,姚晓亮,余帆. 冻融作用对不同初始状态基坑稳定性的影响研究[J]. 冰川冻土, 2021, 43(5): 1480-1488. |
[4] | 窦文康, 王泽平, 方金鑫, 韩彤彤, 蒲焘, 张鹏. 旅游活动与水环境耦合分析——以玉龙雪山-丽江盆地为例[J]. 冰川冻土, 2021, 43(4): 1210-1217. |
[5] | 方金鑫, 蒲焘, 史晓宜, 王世金, 牛贺文. 气候变化背景下玉龙雪山漾弓江流域径流变化及其影响因素分析[J]. 冰川冻土, 2019, 41(2): 268-274. |
[6] | 王恒星, 杨林. 冻融作用下草本植物根系加固土体试验研究[J]. 冰川冻土, 2018, 40(4): 792-801. |
[7] | 齐翠姗, 何元庆, 王世金, 何则, 石晓非, 史晓宜. 玉龙雪山国家地质公园地质遗迹资源类型划分及其综合评价[J]. 冰川冻土, 2018, 40(1): 186-196. |
[8] | 燕兴国, 何元庆, 张松林, 牛贺文, 朱国峰, 王世金, 蒲涛, 史晓宜, 石晓非, 齐翠姗. 玉龙雪山白水河1号冰川消融期表面流速特征分析[J]. 冰川冻土, 2017, 39(6): 1212-1220. |
[9] | 何则, 何元庆, 张志刚, 和丽华, 齐翠姗, 刘婧. 玉龙雪山冰川沉积序列OSL定年[J]. 冰川冻土, 2016, 38(6): 1544-1552. |
[10] | 周志东, 刘武. 高原寒区冻融作用对水利工程基岩边坡稳定性影响分析[J]. 冰川冻土, 2015, 37(5): 1268-1274. |
[11] | 牛贺文, 何元庆. 玉龙雪山地区大气降水中粉尘颗粒物特征研究[J]. 冰川冻土, 2014, 36(1): 71-79. |
[12] | 秦璐, 吕光辉*, 何学敏. 艾比湖地区冻融作用对土壤微生物数量和群落结构的影响[J]. 冰川冻土, 2013, 35(6): 1590-1599. |
[13] | 孙才奇, 李川川, 陈艺鑫, 张梅, 聂振宇, 刘耕年. 天山冰缘环境活动层冻融过程定位观测研究[J]. 冰川冻土, 2013, 35(2): 272-279. |
[14] | 杨岁桥, 杨建平, 王世金, 谭春萍, 刘俊峰. 生态-经济系统对冰冻圈变化的适应能力评价——以玉龙雪山地区为例[J]. 冰川冻土, 2012, (2): 485-493. |
[15] | 余帆;齐吉琳;姚晓亮. 多年冻土区路基分层变形现场观测研究 [J]. 冰川冻土, 2011, 33(4): 813-818. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000