X img

官方微信

img

群号:冰川冻土交流群

QQ群:218834310

高级检索
作者投稿 专家审稿 编辑办公 编委办公 主编办公

冰川冻土 ›› 2022, Vol. 44 ›› Issue (5): 1456-1469.doi: 10.7522/j.issn.1000-0240.2022.0130

• 冰工程专栏 • 上一篇    

基于Sentinel-1时间序列的河冰表面物候提取研究

张鑫1(), 牟献友1(), 翟涌光1, 张宝森2, 冀鸿兰1   

  1. 1.内蒙古农业大学 水利与土木建筑工程学院,内蒙古 呼和浩特 010018
    2.黄河水利委员会 黄河水利科学研究院,河南 郑州 450003
  • 收稿日期:2021-03-06 修回日期:2021-04-25 出版日期:2022-10-25 发布日期:2022-11-05
  • 通讯作者: 牟献友 E-mail:zhangxin_ra0910@163.com;mouxianyou@163.com
  • 作者简介:张鑫,硕士研究生,主要从事河冰遥感研究. E-mail: zhangxin_ra0910@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFC1508401);国家自然科学基金项目(51969020);2018内蒙古自治区应用技术研究与开发资金项目(201802104)

Research on extraction of river ice surface phenology based on Sentinel-1 time series: a case study of Inner Mongolia section of the Yellow River

Xin ZHANG1(), Xianyou MOU1(), Yongguang ZHAI1, Baosen ZHANG2, Honglan JI1   

  1. 1.College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
    2.Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou 450003, China
  • Received:2021-03-06 Revised:2021-04-25 Online:2022-10-25 Published:2022-11-05
  • Contact: Xianyou MOU E-mail:zhangxin_ra0910@163.com;mouxianyou@163.com

摘要:

利用遥感技术识别河冰物候信息,能有效地评估河冰生长趋势,提高冰情信息化管理水平。以黄河内蒙古段为例,基于Sentinel-1时间序列遥感影像,综合曲线斜率法与动态阈值法提取了近5年(2015—2020年)黄河内蒙古段海勃湾库尾、三盛公闸下河段、三湖河口河段、头道拐河段以及万家寨库尾5个子段河冰物候(初冰日、完全冻结日、开始消融日、完全消融日)并分析其变化特征。结果表明:5个子河段初冰日和完全消融日的最优提取阈值分别为0.1、0.2、0.1、0.05以及0.05倍的Logistic曲线上下限差,识别偏差在3日以内;完全冻结日和开始消融日出现在Logistic曲线斜率最大(最小)值处,识别偏差在5日以内;5段近5年初冰日呈偏晚趋势,变化速率分别为1.4 d·a-1、1.0 d·a-1、0.8 d·a-1、0.2 d·a-1及0.4 d·a-1;海勃湾库尾和头道拐河段从初冰日至完全冻结日的横向冻结速率正以0.2 d·a-1和1.4 d·a-1逐年增加,而巴彦高勒河段和万家寨库尾区以1.4 d·a-1和1.0 d·a-1逐年减少,三盛公闸下河段基本保持不变。研究成果可为冰凌洪水预测及河岸堤防修建提供科学依据。

关键词: 河冰, 物候特征, 斜率法, 动态阈值法, Sentinel-1, 黄河内蒙古段

Abstract:

Using remote sensing technology to identify river ice phenology information can effectively assess the growth trend of river ice and improve the information management level of ice conditions. based on Sentinel-1 time series remote sensing images, this study took the Inner Mongolia section of the Yellow River as an example, combined curve slope method and dynamic threshold method to extract a five-year (2015—2020) phenological information (FUS, FUE, BUS and BUE) of river ice from the tail of Haibowan reservoir, the lower reach of Sanshenggong Sluise, Sanhuhekou reach, Toudaoguai reach and the tail of Wanjiazhai reservoir, which are five sub sections of Inner Mongolia section of the Yellow River, and analyzed its dynamic characteristics. The result showed that the optimal extraction thresholds for the FUS and the BUE of these five sub-sections are 0.1, 0.2, 0.1, 0.05, and 0.05 times the upper or lower limit of the Logistic curve, and the identification deviations are within 3 days. The FUE and the BUS appear at the maximum (minimum) value of the slope of the Logistic curve, and the identification deviation are within 5 days. The BUS of the five sub sections had a late trend in the past five years, and the rate of change was 1.4 d·a-1, 1.0 d·a-1, 0.8 d·a-1, 0.2 d·a-1 and 0.4 d·a-1, respectively. The freezing rate of the the tai of Haibowan reservoir l and Toudaoguai sections from the BUS to the BUE is increasing at 0.2 d·a-1 and 1.4 d·a-1 year by year, while the Bayangola section and the tail of Wanjiazhai reservoir decrease at 1.4 d·a-1 and 1.0 d·a-1, and the lower reach of Sanshenggong Sluise stays basically the same. Research results of this paper can provide scientific basis for ice flood prediction and construction of bank embankment.

Key words: river ice, phenological characteristics, slope method, dynamic threshold method, Sentinel-1, Inner Mongolia section of the Yellow River

中图分类号: 

  • P343.6+3