1 |
Li Zhenhong, Li Peng, Ding Dong, et al. Research progress of global high resolution digital elevation models[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1927-1942.
|
|
李振洪, 李鹏, 丁咚, 等. 全球高分辨率数字高程模型研究进展与展望[J]. 武汉大学学报, 2018, 43(12): 1927-1942.
|
2 |
Li X, Long D, Scanlon B R, et al. Climate change threatens terrestrial water storage over the Tibetan Plateau[J]. Nature Climate Change, 2022, 12: 801-807.
|
3 |
Khojeh S, Ataie-Ashtiani B, Hosseini S M. Effect of DEM resolution in flood modeling: a case study of Gorganrood River, Northeastern Iran[J]. Natural Hazards, 2022, 112: 2673-2693.
|
4 |
Bove G, Becker A, Sweeney B, et al. A method for regional estimation of climate change exposure of coastal infrastructure: case of USVI and the influence of digital elevation models on assessments[J]. Science of The Total Environment, 2020, 710: 136162.
|
5 |
Shao Z, Fu H, Li D, et al. Remote sensing monitoring of multi-scale watersheds impermeability for urban hydrological evaluation[J]. Remote Sensing of Environment, 2019, 232: 111338.
|
6 |
Zyl J J V. The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography[J]. Acta Astronautica, 2001, 48(5): 559-565.
|
7 |
Krieger G, Moreira A, Fiedler H, et al. TanDEM-X: a satellite formation for high-resolution SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45: 3317-3341.
|
8 |
Wang T Y, Zhang G, Li D R, et al. Geometric accuracy validation for ZY-3 satellite imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1168-1171.
|
9 |
Hugonnet R, Mcnabb R, Berthier E, et al. Accelerated global glacier mass loss in the early twenty-first century[J]. Nature, 2021, 592: 726-731.
|
10 |
Pieczonka T, Bolch T, Junfeng W, et al. Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery[J]. Remote Sensing of Environment, 2013, 130: 233-244.
|
11 |
Wu K, Liu S, Jiang Z, et al. Quantification of glacier mass budgets in the Karakoram region of Upper Indus Basin during the early twenty-first century[J]. Journal of Hydrology, 2021, 603: 127095.
|
12 |
Wang Q, Yi S, Sun W. Continuous estimates of glacier mass balance in High Mountain Asia based on ICESat-1,2 and GRACE/GRACE Follow‐On data[J]. Geophysical Research Letters, 2020, 48(2): e2020GL090954.
|
13 |
Zhang G, Chen W, Xie H. Tibetan Plateau’s lake level and volume changes from NASA’s ICESat/ICESat-2 and Landsat missions[J]. Geophysical Research Letters, 2019, 46(22): 13107-13118.
|
14 |
Kääb A, Leinss S, Gilbert A, et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability[J]. Nature Geoscience, 2018, 11: 114-120.
|
15 |
Zhang Z, Liu S, Zhang Y, et al. Glacier variations at Aru Co in western Tibet from 1971 to 2016 derived from remote-sensing data[J]. Journal of Glaciology, 2018, 64(254): 397-406.
|
16 |
Bash E A, Moorman B J. Surface melt and the importance of water flow: an analysis based on high-resolution unmanned aerial vehicle (UAV) data for an Arctic glacier[J]. The Cryosphere, 2020, 14: 549-563.
|
17 |
Fugazza D, Scaioni M, Corti M, et al. Combination of UAV and terrestrial photogrammetry to assess rapid glacier evolution and map glacier hazards[J]. Natural Hazards and Earth System Sciences, 2018, 18(4): 1055-1071.
|
18 |
Xue Y, Jing Z, Kang S, et al. Combining UAV and Landsat data to assess glacier changes on the central Tibetan Plateau[J]. Journal of Glaciology, 2021, 67(265): 862-874.
|
19 |
Yang W, Zhao C X, Westoby M, et al. Seasonal dynamics of a temperate Tibetan glacier revealed by high-resolution UAV photogrammetry and in situ measurements[J]. Remote Sensing, 2020, 12(15): 2389.
|
20 |
Wu K, Liu S, Zhu Y, et al. Monitoring the surface elevation changes of a monsoon temperate glacier with repeated UAV surveys, Mainri Mountains, China[J]. Remote Sensing, 2022, 14(9): 2229.
|
21 |
Immerzeel W W, Kraaijenbrink P D A, Shea J M, et al. High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles[J]. Remote Sensing of Environment, 2014, 150: 93-103.
|
22 |
Miles E, Mccarthy M, Dehecq A, et al. Health and sustainability of glaciers in High Mountain Asia[J]. Nat Commun, 2021, 12: 2868.
|
23 |
Bhattacharya A, Bolch T, Mukherjee K, et al. High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s[J]. Nature Communications, 2021, 12(1): 4133.
|
24 |
Zhou Y, Li X, Zheng D, et al. Evolution of geodetic mass balance over the largest lake-terminating glacier in the Tibetan Plateau with a revised radar penetration depth based on multi-source high-resolution satellite data[J]. Remote Sensing of Environment, 2022, 275: 113029.
|
25 |
Ke L, Song C, Yong B, et al. Which heterogeneous glacier melting patterns can be robustly observed from space? A multi-scale assessment in southeastern Tibetan Plateau[J]. Remote Sensing of Environment, 2020, 242: 111777.
|
26 |
Wang R, Liu S, Shangguan D, et al. Spatial heterogeneity in glacier mass-balance sensitivity across High Mountain Asia[J]. Water, 2019, 11(4): 776.
|
27 |
Yang W, Guo X F, Yao T D, et al. Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations[J]. Climate Dynamics, 2016, 47(3/4): 805-815.
|
28 |
Zhu M, Yao T, Thompson L G, et al. What induces the spatiotemporal variability of glacier mass balance across the Qilian Mountains[J]. Climate Dynamics, 2022: 1-23.
|
29 |
Zhu M, Yao T, Yang W, et al. Energy- and mass-balance comparison between Zhadang and Parlung No. 4 glaciers on the Tibetan Plateau[J]. Journal of Glaciology, 2015, 61(227): 595-607.
|
30 |
Brun F, Berthier E, Wagnon P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000—2016[J]. Nature Geoscience, 2017, 10(9): 668-673.
|
31 |
Brun F, Wagnon P, Berthier E, et al. Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya[J]. The Cryosphere, 2018, 12(11): 3439-3457.
|
32 |
Dehecq A, Gourmelen N, Gardner A S, et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia[J]. Nature Geoscience, 2019, 12: 22-27.
|
33 |
Shean D E, Bhushan S, Montesano P, et al. A systematic, regional assessment of High Mountain Asia glacier mass balance[J]. Frontiers in Earth Science, 2020, 7: 363.
|
34 |
Wu Kunpeng, Liu Shiyin, Bao Weijia, et al. Remote sensing monitoring of the glacier change in the Gangrigabu Range, southeast Tibetan Plateau from 1980 through 2015[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 24-34.
|
|
吴坤鹏, 刘时银, 鲍伟佳, 等. 1980―2015年青藏高原东南部岗日嘎布山冰川变化的遥感监测[J]. 冰川冻土, 2017, 39(1): 24-34.
|
35 |
Yang Wei, Yao Tandong, Xu Baiqing, et al. Characteristics of recent temperat glacier fluctuations in the Parlang Zangbo River basin, soutbeast Tibetan Plateau[J]. Chinese Science Bulletin, 2010, 55(18): 1775-1780.
|
|
杨威, 姚檀栋, 徐柏青, 等. 近期藏东南帕隆藏布流域冰川的变化特征[J]. 科学通报, 2010, 55(18): 1775-1780.
|
36 |
Ke L, Ding X, Zhang L, et al. Compiling a new glacier inventory for southeastern Qinghai-Tibet Plateau from Landsat and PALSAR data[J]. Journal of Glaciology, 2016, 62(233): 1-14.
|
37 |
Li Xia, Yang Taibao, Ji Qin. Study on glacier variations in the Gangrigabu range[J]. Research of Soil and Water Conservation, 2014, 21(4): 233-237.
|
|
李霞, 杨太保, 冀琴. 岗日嘎布地区冰川变化特征研究[J]. 水土保持研究, 2014, 21(4): 233-237.
|
38 |
Wu Kunpeng, Liu Shiyin, Guo Wanqin. A dataset of glacier distribution and glacier changes in the Kangri Karpo Mountains during 1980—2015[J]. China Scientific Data, 2018, 3(4): 64-71.
|
|
吴坤鹏, 刘时银, 郭万钦. 1980—2015年岗日嘎布地区冰川分布数据集[J]. 中国科学数据, 2018, 3(4): 64-71.
|
39 |
Wu K, Liu S, Jiang Z, et al. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories[J]. The Cryosphere, 2018, 12(1): 103-121.
|
40 |
Wu K, Liu S, Xu J, et al. Spatiotemporal variability of surface velocities of monsoon temperate glaciers in the Kangri Karpo Mountains, southeastern Tibetan Plateau[J]. Journal of Glaciology, 2020, 67(261): 1-6.
|