1 |
Qin Dahe, Ding Yongjian, Xiao Cunde, et al. Cryospheric science: research framework and disciplinary system[J]. National Science Review, 2018, 5(2): 255-268.
|
2 |
Wang Puyu, Li Zhongqin, Li Huilin, et al. Characteristics of a partially debris-covered glacier and its response to atmospheric warming in Mt. Tomor, Tien Shan, China[J]. Global and Planetary Change, 2017, 159: 11-24.
|
3 |
Li Zhongqin, Li Kaiming, Wang Lin. Study on recent glacier changes and their impacton water resources in Xinjiang, North Western China[J]. Quaternary Sciences, 2010, 30(1): 96-106.
|
|
李忠勤, 李开明, 王林. 新疆冰川近期变化及其对水资源的影响研究[J]. 第四纪研究, 2010, 30(1): 96-106.
|
4 |
Yang Wei, Guo Xiaofeng, Yao Tandong, et al. Summertime surface energy budget and ablation modeling in the blation zone of a maritime Tibetan glacier[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D14): D14116.
|
5 |
Wang Puyu, Li Zhongqin, Schneider Christoph, et al. A test study of an energy and mass balance model application to a site on Urumqi Glacier No.1, Chinese Tian Shan[J]. Water, 2020, 12(10): 2865
|
6 |
Zhu Meilin, Yao Tandong, Yang Wei, et al. Energy-and mass-balance comparison between Zhadang and Parlung No.4 glaciers on the Tibetan Plateau[J]. Journal of Glaciology, 2015, 61(227): 595-607.
|
7 |
Sun Weijun, Qin Xiang, Ren Jiawen, et al. Surface energy balance in the accumulation zone of the Laohugou Glacier No.12 in the Qilian Mountains during ablation period[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 38-46.
|
|
孙维君, 秦翔, 任贾文, 等. 祁连山老虎沟12号冰川积累区消融期能量平衡特征[J]. 冰川冻土, 2011, 33(1): 38-46.
|
8 |
Dowson A J, Sirguey P, Cullen N J. Variability in glacier albedo and links to annual mass balance for the gardens of Eden and Allah, Southern Alps, New Zealand[J]. The Cryosphere, 2020, 14(10): 3425-3448.
|
9 |
Dickinson R E. Land surface processes and climate-surface albedos and energy balance[J]. Advances in Geophysics, 1983, 25(12): 305-353.
|
10 |
Li Yaojun, Ding Yongjian, Shangguan Donghui, et al. Climate-driven acceleration of glacier mass loss on global and regional scales during 1961—2016[J]. Science China Earth Sciences, 2021, 51(3): 453-464.
|
|
李耀军, 丁永建, 上官冬辉, 等. 1961—2016年全球变暖背景下冰川物质亏损加速度研究[J]. 中国科学: 地球科学, 2021, 51(3): 453-464.
|
11 |
Farinotti D, Longuevergne L, Moholdt G, et al. Substantial glacier mass loss in the Tien Shan over the past 50 years[J]. Nature Geoscience, 2015, 8(9): 716-722.
|
12 |
Wang Puyu, Li Zhongqin, Li Hongliang, et al. Glaciers in Xinjiang, China: past changes and current status[J]. Water, 2020, 12(9): 2367.
|
13 |
Zhang Zhengyong, He Xinlin, Liu Lin, et al. Ecological service functions and value estimation of glaciers in the Tianshan Mountains, China[J]. Acta Geographica Sinica, 2018, 73(5): 856-867.
|
|
张正勇, 何新林, 刘琳, 等. 中国天山冰川生态服务功能及价值评估[J]. 地理学报, 2018, 73(5): 856-867.
|
14 |
Zhang Yulan, Gao Tanguang, Kang Shichang, et al. Albedo reduction as an important driver for glacier melting in Tibetan Plateau and its surrounding areas[J]. Earth-Science Reviews, 2021, 220: 103735.
|
15 |
Brun F, Berthier E, Wagnon P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016[J]. Nature geoscience, 2017, 10(9): 668-673.
|
16 |
Tedesco M, Fettweis X, Van D B M R, et al. The role of albedo and accumulation in the 2010 melting record in Greenland[J]. Environmental Research Letters, 2011, 6(1): 014005.
|
17 |
Marshall S J, Miller K. Seasonal and interannual variability of melt-eason albedo at Haig Glacier, Canadian Rocky Mountains[J]. The Cryosphere, 2020, 14(10): 3249-3267.
|
18 |
Mortimer C A, Sharp M. Spatiotemporal variability of Canadian High Arctic glacier surface albedo from MODIS data, 2001–2016[J]. The Cryosphere, 2018, 12(2): 701-720.
|
19 |
Yue Xiaoying, Li Zhongqin, Wang Feiteng, et al. The characteristics of surface albedo on the Urumqi Glacier No.1 during the ablation season in eastern Tien Shan[J]. Journal of Glaciology and Geocryology, 2021, 43(5): 1412-1423.
|
|
岳晓英, 李忠勤, 王飞腾, 等. 天山乌鲁木齐河源1号冰川消融期反照率特征[J]. 冰川冻土, 2021, 43(5): 1412-1423.
|
20 |
Xu Tianli, Wu Guangjian, Zhang Xuelei, et al. Albedo on glaciers in the Tibetan Plateau based on MODIS data:spatiotemporal distribution and variation[J]. Journal of Glaciology and Geocryology, 2018, 40(5): 875-883.
|
|
徐田利, 邬光剑, 张学磊, 等. 基于MODIS数据的青藏高原冰川反照率时空分布及变化研究[J]. 冰川冻土, 2018, 40(5): 875-883.
|
21 |
Wang Zongtai. New statistical figures and dstribution feature of glaciers on the various mountains in China[J]. Arid Land Geography, 1988, 11(3): 11-17.
|
|
王宗太. 中国各山脉的冰川最新统计及其分布特征[J]. 干旱区地理, 1988, 11(3): 11-17.
|
22 |
Shi Yafeng, Liu Chaohai, Wang Zongtai,et al. Concise China glacier inventory[M].Shanghai: Shanghai Science Popularization Press, 2005: 101-105.
|
|
施雅风, 刘潮海, 王宗太,等. 简明中国冰川编目[M].上海:上海科学普及出版社, 2005: 101-105.
|
23 |
Wang Yanqiang, Zhao Jun, Li Zhongqin, et al. Glacier changes in the Sawuer Mountain during 1977—2017 and their response to climate change[J]. Journal of Natural Resource, 2019, 34(4): 802-814.
|
|
王炎强, 赵军, 李忠勤, 等. 1977—2017年萨吾尔山冰川变化及其对气候变化的响应[J]. 自然资源学报, 2019, 34(4): 802-814.
|
24 |
Huai Baojuan, Li Zhongqin, Wang Feiteng, et al. Glacier volume estimation from ice-thickness data, applied to the Muz Taw glacier, Sawir Mountains, China[J]. Environmental Earth Sciences, 2015, 74(3): 1-10.
|
25 |
Panagiotopoulos F, Shahgedanova M, Hannachi A, et al. Observed trends and teleconnections of the Siberian high: a recently declining center of action[J]. Journal of climate, 2005, 18(9): 1411-1422.
|
26 |
Xu Chunhai, Li Zhongqin, Wang Feiteng, et al. Spatio-temporal changes of mass balance in the ablation area of the Muz Taw Glacier, Sawir Mountains, from multi-temporal terrestrial geodetic surveys[J]. Remote Sensing, 2021, 13(8): 1465.
|
27 |
Huang Wei, Zhang Liangpei, Li Pingxiang. An improved topographic correction approach for satellite image[J]. Journal of Image and Graphics, 2005(9): 1124-1128.
|
|
黄微, 张良培, 李平湘. 一种改进的卫星影像地形校正算法[J]. 中国图象图形学报, 2005(9): 1124-1128.
|
28 |
Liang S. Narrowband to broadband conversions of land surface albedo I: algorithms[J]. Remote sensing of environment, 2001, 76(2): 213-238.
|
29 |
Duguay C R, Ledrew E F. Estimating surface reflectance and albedo over rugged terrain from Landsat-5 Thematic Mapper[J]. Photogrammetric Engineering and Remote Sensing, 1992, 58(5): 551-558.
|
30 |
Knap W H, Reijmer C H, Oerlemans J. Narrowband to broadband conversion of Landsat TM glacier albedos[J]. International Journal of Remote Sensing, 1999, 20(10): 2091-2110.
|
31 |
Gratton D J, Howarth P J, Marceau D J. Using Landsat-5 thematic mapper and digital elevation data to determine the net radiation field of a mountain glacier[J]. Remote Sensing of Environment, 1993, 43(3): 315-331.
|
32 |
Greuell W, Reijmer C H, Oerlemans J. Narrowband-to-broadband albedo conversion for glacier ice and snow based on aircraft and near-surface measurements[J]. Remote Sensing of Environment, 2002, 82(1): 48-63.
|
33 |
Mao Ruijuan, Xi Jang, Guo Zhongming, et al. Study of the inversion precision of albedo on the Qiyi Glacier in the Qilian Mountain based on TM/ETM+ image[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 301-309.
|
|
毛瑞娟, 蒋熹, 郭忠明, 等. 基于TM/ETM+影像反演祁连山七一冰川反照率精度比较研究[J]. 冰川冻土, 2013, 35(2): 301-309.
|
34 |
Qin Dahe, Zhou Botao, Xiao Cunde. Progress in studies of cryospheric changes and their impacts on climate of China[J]. Acta Meteorologica Sinica, 2014, 72(5): 869-879.
|
|
秦大河, 周波涛, 效存德. 冰冻圈变化及其对中国气候的影响[J]. 气象学报, 2014, 72(5): 869-879.
|
35 |
Gardner A S, Sharp M J. A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization[J]. Journal of Geophysical Research: Earth Surface, 2010, 115: F01009.
|
36 |
Wang Junyao, Huai Baojuan, Wang Yetang, et al. Spatiotemporal variation of albedo of four representative glaciers in the Heihe River Basin based on multi-source data[J]. Arid Zone Research, 2020, 37(6): 1396-1405.
|
|
王俊瑶, 怀保娟, 王叶堂, 等. 基于MOD10A1的祁连山黑河流域典型冰川反照率时空变化研究[J]. 干旱区研究, 2020, 37(6): 1396-1405.
|
37 |
Yue Xiaoying, Li Zhongqin, Zhao Jun, et al. Changes in the end-of-summer snow line altitude of summer-accumulation-type glaciers in the Eastern Tien Shan Mountains from 1994 to 2016[J]. Remote Sensing, 2021, 13(6): 1080.
|
38 |
Wang Jie, Ye Baisheng, Cui Yuhuan, et al. Spatial and temporal variations of albedo on nine glaciers in western China from 2000 to 2011[J]. Hydrological Processes, 2014, 28(9): 3454-3465.
|
39 |
Jiang Xi, Wang Ninglian, He Jianqiao, et al. A distributed surface energy and mass balance model and its application to a mountain glacier in China[J]. Chinese Science Bulletin, 2010, 55(20): 2079-2087.
|
40 |
Wu Xuejiao, Wang Ninglian, Lu Anxin, et al. Variations in albedo on Dongkemadi glacier in Tanggula Range on the Tibetan Plateau during 2002—2012 and its linkage with mass balance[J]. Arctic Antarctic and Alpine Research, 2015, 47(2): 281-292.
|
41 |
Dumont M, Gardelle J, Sirguey P, et al. Linking glacier annual mass balance and glacier albedo retrieved from MODIS data[J]. The Cryosphere, 2012, 6(6): 1527-1539.
|
42 |
Wang Puyu, Li Zhongqin, Li Huilin, et al. Comparison of glaciological and geodetic mass balance at Urumqi Glacier No. 1, Tian Shan, Central Asia[J]. Global and Planetary Change, 2014, 114: 14-22.
|
43 |
Liu Yushuo, Qin Xiang, Chen Jizu, et al. Variations of Laohugou Glacier No. 12 in the western Qilian Mountains, China, from 1957 to 2015[J]. Journal of Mountain Science, 2018, 15(1): 25-32.
|
44 |
Yao Tandong, Thompson L, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
|
45 |
Kylling A, Dahlback A, Mayer B. The effect of clouds and surface albedo on UV irradiances at a high latitude site[J]. Geophysical Research Letters, 2000, 27(9): 1411-1414.
|
46 |
Chen Jizu, Qin Xiang, Kang Shichang, et al. Effects of clouds on surface melting of Laohugou glacier No. 12, western Qilian Mountains, China[J]. Journal of Glaciology, 2018, 64(243): 1-11.
|
47 |
Michiel V D B, Carleen R, Dirk V A, et al. Daily cycle of the surface energy balance in Antarctica and the influence of clouds[J]. International Journal of Climatology, 2006, 26(12): 1587-1605.
|
48 |
Jiang Xi. Progress in the research of snow and ice albedo[J]. Journal of Glaciology and Geocryology, 2006, 28(5): 728-738.
|
|
蒋熹. 冰雪反照率研究进展[J]. 冰川冻土, 2006, 28(5): 728-738.
|
49 |
Thind P S, Chandel K K, Sharma S K, et al. Light-absorbing impurities in snow of the Indian Western Himalayas: impact on snow albedo, radiative forcing, and enhanced melting.[J]. Environmental Science and Pollution Research international, 2019, 26(8): 7566-7578.
|
50 |
Zhang Yulan, Gao Tanguang, Kang Shichang, et al. Effects of black carbon and mineral dust on glacial melting on the Muz Taw glacier, Central Asia[J]. Science of the Total Environment, 2020, 740(10): 140056.
|
51 |
Li Xiaofei, Kang Shichang, He Xiaobo, et al. Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau[J]. Science of the Total Environment, 2017, 587: 482-490.
|