1 |
Xie Zichu, Liu Chaohai. Introduction to glaciology[M]. Shanghai: Shanghai Popular Science Press, 2010.
|
|
谢自楚, 刘潮海. 冰川学导论[M]. 上海: 上海科学普及出版社, 2010.
|
2 |
Zhang Zhen, Huang Danni, Lu Yijie, et al. A Landsat-based dataset of glacier velocity in Eastern Pamir from 1989 to 2020[J]. Science Data Bank, 2021, 6(3): 170-181.
|
|
张震, 黄丹妮, 陆艺杰, 等. 1989—2020年基于Landsat的东帕米尔高原冰川运动速度数据集[J]. 中国科学数据(中英文网络版), 2021, 6(3): 170-181.
|
3 |
Jing Zhefan, Ye Baisheng, Jiao Keqin, et al. Surface velocity on the Glacier No. 51 at Haxilegen of the Kuytun River, Tianshan Mountains[J]. Journal of Glaciolgy and Geocryology, 2012, 24(5): 563-566.
|
|
井哲帆, 叶柏生, 焦克勤, 等. 天山奎屯河哈希勒根51号冰川表面运动特征分析[J]. 冰川冻土, 2012, 24(5): 563-566.
|
4 |
Jing Zhefan, Zhou Zaiming, Liu Li. Progress of the research on glacier velocities in China[J]. Journal of Glaciolgy and Geocryology, 2010, 32(4): 749-754.
|
|
井哲帆, 周在明, 刘力. 中国冰川运动速度研究进展[J]. 冰川冻土, 2010, 32(4): 749-754.
|
5 |
Paul F, Bolch T, Kääb A, et al. The glaciers climate change initiative: methods for creating glacier area, elevation change and velocity products[J]. Remote Sensing of Environment, 2015, 162: 408-426.
|
6 |
Cao Ming, Li Zhongqin, Li Huilin. Features of the surface flow velocity on the Qingbingtan Glacier No.72, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 21-29.
|
|
曹敏, 李忠勤, 李慧林. 天山托木尔峰地区青冰滩72号冰川表面运动速度特征研究[J]. 冰川冻土, 2011, 33(1): 21-29.
|
7 |
Cao Bo, Wang Jie, Pan Baotian, et al. Surface flow velocities of the Ningchanhe No.1 and Shuiguanhe No.4 Glaciers in the East Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1428-1435.
|
|
曹泊, 王杰, 潘保田, 等. 祁连山东段宁缠河1号冰川和水管河4号冰川表面运动速度研究[J]. 冰川冻土, 2013, 35(6): 1428-1435.
|
8 |
Yasuda T, Furuya M. Dynamics of surge‐type glaciers in West Kunlun Shan, northwestern Tibet[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(11): 2393-2405.
|
9 |
Kraaijenbrink P, Meijer S W, Shea J M, et al. Seasonal surface velocities of a Himalayan glacier derived by automated correlation of unmanned aerial vehicle imagery[J]. Annals of Glaciology, 2016, 57(71): 103-113.
|
10 |
Guan Weijin, Cao Bo, Pan Baotian. Research of glacier flow velocity: current situation and prospects[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1101-1114.
|
|
管伟瑾, 曹泊, 潘保田. 冰川运动速度研究:方法、变化、问题与展望[J]. 冰川冻土, 2020, 42(4): 1101-1114.
|
11 |
Zhou Jianmin. Analysis and extraction of mountain glacier parameters using SAR interferometry[D]. Beijing: Institute of Remote Sensing Applications, Chinese Academy of Sciences, 2009.
|
|
周建民. 基于SAR干涉测量的山地冰川参数提取与分析[D]. 北京: 中国科学院遥感应用研究所, 2009.
|
12 |
Yan Shiyong. Research on extraction of alpine glacier surface movement by SAR remote sensing[D]. Beijing: University of Chinese Academy of Sciences, 2013.
|
|
闫世勇. 山地冰川表面运动雷达遥感监测方法研究[D]. 北京: 中国科学院大学, 2013.
|
13 |
Wang Qun. Application of DInSAR and offset tracking technology in velocity monitoring of mountain glaciers[D]. Beijing: China University of Geosciences, Beijing, 2018.
|
|
王群. DInSAR和偏移量跟踪技术在山地冰川流速监测中的应用[D]. 北京: 中国地质大学(北京), 2018.
|
14 |
Berthier E, Vadon H, Baratoux D, et al. Surface motion of mountain glaciers derived from satellite optical imagery[J]. Remote Sensing of Environment, 2005, 95(1): 14-28.
|
15 |
Ruiz L, Berthier E, Masiokas M, et al. First surface velocity maps for glaciers of Monte Tronador, North Patagonian Andes, derived from sequential Pléiades satellite images[J]. Journal of Glaciology, 2015, 61(229): 908-922.
|
16 |
Wang Qun, Fang Jinghui, Zhou Wei, et al. Research on the DEM-assisted offset tracking technique applied to glaciers movement monitoring[J]. Remote Sensing for Land & Resources, 2018, 30(3): 167-173.
|
|
王群, 范景辉, 周伟, 等. DEM辅助偏移量跟踪技术的山地冰川运动监测研究[J]. 国土资源遥感, 2018, 30(3): 167-173.
|
17 |
Jiang Zongli, Liu Shiyin, Long Sichun, et al. Dynamic characteristics analysis of Gonggeer Mountain Glacier based on synthetic aperture radar and DEM[J]. Journal of Glaciology and Geocryology, 2014, 36(2): 286-295.
|
|
蒋宗立, 刘时银, 龙四春, 等. 基于合成孔径雷达技术及DEM的公格尔山冰川动力特征分析[J]. 冰川冻土, 2014, 36(2): 286-295.
|
18 |
Li Yi, Yan Shiyong, Li Zhiguo, et al. The flow state of South Inylchek Glacier in the Tianshan Mountains in 2016: extraction and analysis based on Landsat-8 OLI image[J]. Journal of Glaciology and Geocryology, 2017, 39(6): 1281-1288.
|
|
李毅, 闫世勇, 李治国, 等. 基于Landsat-8 OLI影像的天山南伊内里切克冰川2016年冰川表面运动状态提取与分析[J]. 冰川冻土, 2017, 39(6): 1281-1288.
|
19 |
Sam L, Bhardwaj A, Kumar R, et al. Heterogeneity in topographic control on velocities of Western Himalayan glaciers[J]. Scientific Reports, 2018, 8(1): 1-16.
|
20 |
Dehecq A, Gourmelen N, Gardner A S, et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia[J]. Nature Geoscience, 2019, 12(1): 22-27.
|
21 |
Das S, Sharma M C, Miles K E. Flow velocities of the debris-covered Miyar Glacier, western Himalaya, India[J]. Geografiska Annaler: Series A, Physical Geography, 2021: 1-24.
|
22 |
Zhou Zhongzheng, Xu Caijun, Liu Yang, et al. Extraction and analysis of temporal and spatial variation characteristics of surface velocity of Gangnalou Glacier[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 226-233.
|
|
周中正, 许才军, 刘洋, 等. 岗纳楼冰川表面流速时空变化特征提取及分析[J]. 武汉大学学报(信息科学版), 2022, 47(2): 226-233.
|
23 |
Xu Junli, Zhang Shiqiang, Han Haidong, et al. Change of the surface velocity of Koxkar Baxi glacier interpreted from remote sensing data, Tianshan Mountain[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 268-275.
|
|
许君利, 张世强, 韩海东, 等. 天山托木尔峰科其喀尔巴西冰川表面运动速度特征分析[J]. 冰川冻土, 2011, 33(2): 268-275.
|
24 |
Lu Hongli, Han Haidong, Xu Junli, et al. Analysis of the flow features in the ablation zone of the Koxkar Glacier on south slopes of the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36(2): 248-258.
|
|
鲁红莉, 韩海东, 许君利, 等. 天山南坡科其喀尔冰川消融区运动特征分析[J]. 冰川冻土, 2014, 36(2): 248-258.
|
25 |
Liu Chaohai, Ding Liangfu, Wang Zongtai. Catalogue of glaciers in China Ⅲ Tianshan Mountain Area (Southwest Tarim inflow area)[M]. Beijing: Science Press, 1987: 15-69.
|
|
刘潮海, 丁良福, 王宗太. 中国冰川目录Ⅲ天山山区(西南塔里木内流区)[M]. 北京: 科学出版社, 1987: 15-69.
|
26 |
Wenwu Qing, Chen Rensheng. Ablation estimation on the Keqicarbaxi Glacier on the south slopes of the Tianshan Mountains[J]. Mountain Research, 2009, 27(4): 394-401.
|
|
卿文武, 陈仁升. 天山南坡科其喀尔巴西冰川消融估算[J]. 山地学报, 2009, 27(4): 394-401.
|
27 |
Li Jing, Liu Shiyin, Zhang Yong. Snow surface energy balance over the ablation period on the Keqicar Baxi Glacier in the Tianshan Mountain[J]. Journal of Glaciology and Geocryology,2007,29(3):366-373.
|
|
李晶,刘时银,张勇. 天山南坡科契卡尔巴西冰川消融期雪面能量平衡研究[J].冰川冻土,2007,29(3):366-373.
|
28 |
Xie Changwei, Ding Yongjian, Liu Shiyin,et al. Variation of Keqikaer Glacier terminus in Tomur Peak during last 30 years[J]. Journal of Glaciology and Geocryology,2006,28(5):672-677.
|
|
谢昌卫,丁永建,刘时银,等. 近30 a来托木尔峰南麓科其喀尔冰川冰舌区变化[J].冰川冻土,2006,28(5):672-677.
|
29 |
Wu Wenjiao, Zhang Shifang, Zhao Shangmin. Analysis and comparison of SRTM1 DEM and ASTER GDEM V2 Data[J]. Journal of Geo-Information Science, 2017, 19(8): 1108-1115.
|
|
武文娇, 章诗芳, 赵尚民. SRTM1 DEM与ASTER GDEM V2数据的对比分析[J]. 地球信息科学学报, 2017, 19(8): 1108-1115.
|
30 |
Gardner A S, Fahnestock M A, Agram P S, et al. ITS_LIVE: a new NASA MEaSUReS initiative to track the movement of the world’s ice[C]//AGU Fall Meeting Abstracts. 2018, 2018: C14A-02B.
|
31 |
Fahnestock M, Scambos T, Moon T, et al. Rapid large-area mapping of ice flow using Landsat 8[J]. Remote Sensing of Environment, 2016, 185: 84-94.
|
32 |
Friedl P, Seehaus T, Braun M. Global time series and temporal mosaics of glacier surface velocities derived from Sentinel-1 data[J]. Earth System Science Data, 2021, 13(10): 4653-4675.
|
33 |
Leprince S, Ayoub F, Klinger Y, et al. Co-registration of optically sensed images and correlation (COSI-Corr): an operational methodology for ground deformation measurements[C]//2007 IEEE international geoscience and remote sensing symposium. IEEE, 2007: 1943-1946.
|
34 |
Scherler D, Leprince S, Strecker M R. Glacier-surface velocities in alpine terrain from optical satellite imagery: accuracy improvement and quality assessment[J]. Remote Sensing of Environment, 2008, 112(10): 3806-3819.
|
35 |
Wang X, Shangguan D, Li D, et al. Spatiotemporal variability of velocity and influence of glacier thickness using Landsat imagery: Hunza River Basin, Karakoram Range[J]. IEEE Access, 2021, 9: 72808-72819.
|
36 |
Heid T, Kääb A. Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery[J]. Remote Sensing of Environment, 2012, 118: 339-355.
|
37 |
Bolch T, Pieczonka T, Benn D I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery[J]. The Cryosphere, 2011, 5(2): 349-358.
|
38 |
Wang Lei, Jiang Zongli, Liu Shiyin, et al. Characteristic of glaciers’ movement along Karakoram Highway[J]. Remote Sensing Technology and Application, 2019, 34(2): 412-423.
|
|
王磊, 蒋宗立, 刘时银, 等. 中巴公路沿线冰川运动特征[J]. 遥感技术与应用, 2019, 34(2): 412-423.
|
39 |
Koblet T, Gärtner-Roer I, Zemp M, et al. Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959–99)–Part 1: determination of length, area, and volume changes[J]. The Cryosphere, 2010, 4(3): 333-343.
|
40 |
Zhang Z, Liu S, Jiang Z, et al. Glacier variations at Xinqingfeng and Malan Ice Caps in the Inner Tibetan Plateau Since 1970[J]. Remote Sensing, 2020, 12(3): 421.
|
41 |
Qin Dahe, Yao Tandong, Ding Yongjian, et al. Introduction to cryospheric science[M]. Beijing: Science Press, 2017.
|
|
秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学概论[M]. 北京: 科学出版社, 2017.
|
42 |
Kehrl L M, Joughin I, Shean D E, et al. Seasonal and interannual variabilities in terminus position, glacier velocity, and surface elevation at Helheim and Kangerlussuaq Glaciers from 2008 to 2016[J]. Journal of Geophysical Research: Earth Surface, 2017, 122(9): 1635-1652.
|
43 |
Buchli T, Kos A, Limpach P, et al. Kinematic investigations on the Furggwanghorn rock glacier, Switzerland[J]. Permafrost and Periglacial Processes, 2018, 29(1): 3-20.
|
44 |
Cicoira A, Beutel J, Faillettaz J, et al. Water controls the seasonal rhythm of rock glacier flow[J]. Earth and Planetary Science Letters, 2019, 528: 115844.
|
45 |
Kenner R, Phillips M, Beutel J, et al. Factors controlling velocity variations at short-term, seasonal and multiyear time scales, Ritigraben rock glacier, Western Swiss Alps[J]. Permafrost and Periglacial Processes, 2017, 28(4): 675-684.
|
46 |
Wang Y, Zhang T, Xiao C, et al. A two-dimensional, higher-order, enthalpy-based thermomechanical ice flow model for mountain glaciers and its benchmark experiments[J]. Computers & Geosciences, 2020, 141: 104526.
|
47 |
Bevan S L, Luckman A, Khan S A, et al. Seasonal dynamic thinning at Helheim Glacier[J]. Earth and Planetary Science Letters, 2015, 415: 47-53.
|
48 |
IPCC. IPCC Special report on the ocean and cryosphere in a changing climate [M].Cambridge: Cambridge University Press, 2019.
|
49 |
Brun F, Berthier E, Wagnon P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016[J]. Nature Geoscience, 2017, 10(9): 668-673.
|
50 |
Wirz V, Gruber S, Purves R S, et al. Short-term velocity variations at three rock glaciers and their relationship with meteorological conditions[J]. Earth Surface Dynamics, 2016, 4(1): 103-123.
|