1 |
Qiu J. China: the third pole[J]. Nature, 2008, 454(7203): 393-396.
|
2 |
Immerzeel W W, Bierkens M F P. Asian water towers: more on monsoons—response[J]. Science, 2010, 330(6004): 585.
|
3 |
Gu Lianglei, Yao Jimin, Hu Zeyong, et al. Comparison of the surface energy budget between regions of seasonally frozen ground and permafrost on the Tibetan Plateau[J]. Atmospheric Research, 2015, 153: 553-564.
|
4 |
Yanai M, Li Chengfeng, Song Zhengshan. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J]. Journal of the Meteorological Society of Japan Ser II, 1992, 70(1B): 319-351.
|
5 |
Ye Duzheng, Wu Guoxiong. The role of the heat source of the Tibetan Plateau in the general circulation[J]. Meteorology and Atmospheric Physics, 1998, 67(1/2/3/4): 181-198.
|
6 |
Duan Anmin, Wu Guoxiong, Liu Yimin, et al. Weather and climate effects of the Tibetan Plateau[J]. Advances in Atmospheric Sciences, 2012, 29(5): 978-992.
|
7 |
Yang Kun, Wu Hui, Qin Jun, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global and Planetary Change, 2014, 112: 79-91.
|
8 |
Zou Defu, Zhao Lin, Sheng Yu, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2527-2542.
|
9 |
Pavlov A V. Current changes of climate and permafrost in the Arctic and sub-Arctic of Russia[J]. Permafrost and Periglacial Processes, 1994, 5(2): 101-110.
|
10 |
Ma Junjie, Li Ren, Liu Hongchao, et al. The surface energy budget and its impact on the freeze-thaw processes of active layer in permafrost regions of the Qinghai-Tibetan Plateau[J]. Advances in Atmospheric Sciences, 2022, 39(1): 189-200.
|
11 |
Ma Di, Luo Siqiong, Guo Donglin, et al. Simulated effect of soil freeze-thaw process on surface hydrologic and thermal fluxes in frozen ground region of the Northern Hemisphere[J]. Sciences in Cold and Arid Regions, 2021, 13(1): 18-29.
|
12 |
Ge Jun, Yu Ye, Li Zhenchao, et al. Impacts of freeze/thaw processes on land surface energy fluxes in the permafrost region of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2016, 35(3): 608-620.
|
|
葛骏, 余晔, 李振朝, 等. 青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J]. 高原气象, 2016, 35(3): 608-620.
|
13 |
Chen Boli, Luo Siqiong, Shihua Lü, et al. Land surface characteristics in soil freezing and thawing process on the Tibetan Plateau based on community land model[J]. Journal of Glaciology and Geocryology, 2017, 39(4): 760-770.
|
|
陈渤黎, 罗斯琼, 吕世华, 等. 基于CLM模式的青藏高原土壤冻融过程陆面特征研究[J]. 冰川冻土, 2017, 39(4): 760-770.
|
14 |
Zhao Lin, Hu Guojie, Zou Defu, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1233-1246.
|
|
赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊, 2019, 34(11): 1233-1246.
|
15 |
Ding Yongjian, Zhang Shiqiang, Wu Jinkui, et al. Recent progress on studies on cryospheric hydrological processes changes in China[J]. Advances in Water Science, 2020, 31(5): 690-702.
|
|
丁永建, 张世强, 吴锦奎, 等. 中国冰冻圈水文过程变化研究新进展[J]. 水科学进展, 2020, 31(5): 690-702.
|
16 |
Cheng Guodong, Zhao Lin, Li Ren, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2783-2795.
|
|
程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27): 2783-2795.
|
17 |
Ma Yaoming, Su Zhongbo, Koike T, et al. On measuring and remote sensing surface energy partitioning over the Tibetan Plateau: from GAME/Tibet to CAMP/Tibet[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2003, 28(1/2/3): 63-74.
|
18 |
Yao Jimin, Zhao Lin, Ding Yongjian, et al. Surface energy budget in the Tanggula region on the Tibetan Plateau, 2005[J]. Journal of Glaciology and Geocryology, 2008, 30(1): 119-124.
|
|
姚济敏, 赵林, 丁永建, 等. 2005年青藏高原唐古拉地区地表能量收支状况分析[J]. 冰川冻土, 2008, 30(1): 119-124.
|
19 |
Zhou Youwu, Qiu Guoqing, Guo Dongxin, et al. Geocryology in China[M]. Beijing: Science Press, 2000: 1-62.
|
|
周幼吾, 邱国庆, 郭东信, 等. 中国冻土[M]. 北京: 科学出版社, 2000: 1-62.
|
20 |
Li Ren, Zhao Lin, Ding Yongjian, et al. The effect of global radiation budget on seasonal frozen depth in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2009, 31(3): 422-430.
|
|
李韧, 赵林, 丁永建, 等. 青藏高原总辐射变化对高原季节冻土冻结深度的影响[J]. 冰川冻土, 2009, 31(3): 422-430.
|
21 |
Yao Jimin, Zhao Lin, Gu Lianglei, et al. The surface energy budget in the permafrost region of the Tibetan Plateau[J]. Atmospheric Research, 2011, 102(4): 394-407.
|
22 |
Xiao Yao, Zhao Lin, Li Ren, et al. Seasonal variation characteristics of surface energy budget components in permafrost regions of northern Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2011, 33(5): 1033-1039.
|
|
肖瑶, 赵林, 李韧, 等. 青藏高原腹地高原多年冻土区能量收支各分量的季节变化特征[J]. 冰川冻土, 2011, 33(5): 1033-1039.
|
23 |
Yang Meixue, Yao Tandong, Nozomu Hirose, et al. Diurnal freeze-thaw cycles of the ground surface on the Tibetan Plateau[J]. Chinese Science Bulletin, 2006, 51(16): 1974-1976.
|
|
杨梅学, 姚檀栋, Nozomu Hirose, 等. 青藏高原表层土壤的日冻融循环[J]. 科学通报, 2006, 51(16): 1974-1976.
|
24 |
Zhang Mingli, Wen Zhi, Xue Ke, et al. Surface energy budget analysis in permafrost region of Beiluhe area[J]. Journal of Arid Land Resources and Environment, 2016, 30(9): 134-138.
|
|
张明礼, 温智, 薛珂, 等. 北麓河地区多年冻土地表能量收支分析[J]. 干旱区资源与环境, 2016, 30(9): 134-138.
|
25 |
Liu Yitian, Yao Jimin, Zhao Lin, et al. Surface energy processes during freeze-thaw cycle in Tanggula permafrost region of Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 1073-1082.
|
|
刘艺阗, 姚济敏, 赵林, 等. 青藏高原唐古拉多年冻土区冻融循环过程中的能量平衡特征[J]. 冰川冻土, 2021, 43(4): 1073-1082.
|
26 |
Zhang Guoqing, Yao Tandong, Xie Hongjie, et al. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(14): 8552-8567.
|
27 |
Kuang Xingxing, Jiao J J. Review on climate change on the Tibetan Plateau during the last half century[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(8): 3979-4007.
|
28 |
Hu Guojie, Zhao Lin, Wu Xiaodong, et al. Evaluation of reanalysis air temperature products in permafrost regions on the Qinghai-Tibetan Plateau[J]. Theoretical and Applied Climatology, 2019, 138(3/4): 1457-1470.
|
29 |
Duan Anmin, Xiao Zhixiang, Wu Guoxiong. Characteristics of climate change over the Tibetan Plateau under the global warming during 1979—2014[J]. Climate Change Research, 2016, 12(5): 374-381.
|
|
段安民, 肖志祥, 吴国雄. 1979—2014年全球变暖背景下青藏高原气候变化特征[J]. 气候变化研究进展, 2016, 12(5): 374-381.
|
30 |
Zhao Lin, Zou Defu, Hu Guojie, et al. Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) Plateau[J]. Permafrost and Periglacial Processes, 2020, 31(3): 396-405.
|
31 |
Yao Jimin, Gu Lianglei, Yang Cheng, et al. Estimation of surface energy fluxes in the permafrost region of the Tibetan Plateau based on in situ measurements and the surface energy balance system model[J]. International Journal of Climatology, 2020, 40(13): 5783-5800.
|
32 |
Zhao Lin, Zou Defu, Hu Guojie, et al. A synthesis dataset of permafrost thermal state for the Qinghai–Tibet (Xizang) Plateau, China[J]. Earth System Science Data, 2021, 13(8): 4207-4218.
|
33 |
Zheng Huixuan, Hu Zeyong, Sun Genhou, et al. The bulk transfer coefficient and characteristics of surface heat source on alpine grassland at Naqu[J]. Plateau Meteorology, 2019, 38(3): 497-506.
|
|
郑汇璇, 胡泽勇, 孙根厚, 等. 那曲高寒草地总体输送系数及地面热源特征[J]. 高原气象, 2019, 38(3): 497-506.
|
34 |
Sheng Peixuan, Mao Jietai, Li Jianguo, et al. Atmospheric physics[M]. Beijing: Peking University Press, 2003: 62-250.
|
|
盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2003: 62-250.
|
35 |
Flerchinger G N, Saxton K E. Simultaneous Heat and Water Model of a freezing snow-residue-soil system I. theory and development[J]. Transactions of the ASAE, 1989, 32(2): 565-571.
|
36 |
Frauenfeld O W, Zhang Tingjun, Mccreight J L. Northern Hemisphere freezing/thawing index variations over the twentieth century[J]. International Journal of Climatology, 2007, 27(1): 47-63.
|
37 |
Wu Tonghua, Zhao Lin, Li Ren, et al. Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau[J]. International Journal of Climatology, 2013, 33(4): 920-930.
|
38 |
Yang Kun, Ye Baisheng, Zhou Degang, et al. Response of hydrological cycle to recent climate changes in the Tibetan Plateau[J]. Climatic Change, 2011, 109(3): 517-534.
|
39 |
Xie Jin, Yu Ye, Liu Chuan, et al. Characteristics of surface sensible heat flux over the Qinghai-Tibetan Plateau and its response to climate change[J]. Plateau Meteorology, 2018, 37(1): 28-42.
|
|
解晋, 余晔, 刘川, 等. 青藏高原地表感热通量变化特征及其对气候变化的响应[J]. 高原气象, 2018, 37(1): 28-42.
|
40 |
Duan Anmin, Wu Guoxiong. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. part I: observations[J]. Journal of Climate, 2008, 21(13): 3149-3164.
|
41 |
Yan Xiaoqiang, Hu Zeyong, Sun Genhou, et al. Characteristics of long-term surface heat source and its climate influence factors in Nagqu alpine meadow[J]. Plateau Meteorology, 2019, 38(2): 253-263.
|
|
严晓强, 胡泽勇, 孙根厚, 等. 那曲高寒草地长时间地面热源特征及其气候影响因子分析[J]. 高原气象, 2019, 38(2): 253-263.
|
42 |
Yu Wei, Liu Yimin, Yang Xiuqun, et al. The interannual and decadal variation characteristics of the surface sensible heating at different elevations over the Qinghai-Tibetan Plateau and attribution analysis[J]. Plateau Meteorology, 2018, 37(5): 1161-1176.
|
|
于威, 刘屹岷, 杨修群, 等. 青藏高原不同海拔地表感热的年际和年代际变化特征及其成因分析[J]. 高原气象, 2018, 37(5): 1161-1176.
|
43 |
Wang Huan, Li Dongliang. Impacts of decadal variability in sensible heat over the Tibetan Plateau on decadal transition of summer precipitation over dominant regions of monsoon rainfall band in Eastern China since the early 2000s[J]. Chinese Journal of Geophysics, 2020, 63(2): 412-426.
|
|
王欢, 李栋梁. 21世纪初青藏高原感热年代际增强对中国东部季风雨带关键区夏季降水年代际转折的影响[J]. 地球物理学报, 2020, 63(2): 412-426.
|
44 |
Zhang Lu, Wang Hui, Shi Xingdong, et al. Characteristics and causes of surface sensible heat trend transition in central and eastern Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2020, 39(5): 912-924.
|
|
张璐, 王慧, 石兴东, 等. 青藏高原中东部地表感热趋势转折特征及成因分析[J]. 高原气象, 2020, 39(5): 912-924.
|
45 |
Fan Guangzhou, Shihua Lü, Hua Wei, et al. New progress in the study of the land-atmosphere interaction and its effect over the Tibetan Plateau[J]. Advances in Meteorological Science and Technology, 2021, 11(4): 64-71.
|
|
范广洲, 吕世华, 华维, 等. 青藏高原地-气水热交换特征及影响研究综述[J]. 气象科技进展, 2021, 11(4): 64-71.
|
46 |
Wang Ting, Li Zhaoguo, Shihua Lü, et al. Study on the effects of snow cover on heat transport in land surface processes over Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2019, 38(5): 920-934.
|
|
王婷, 李照国, 吕世华, 等. 青藏高原积雪对陆面过程热量输送的影响研究[J]. 高原气象, 2019, 38(5): 920-934.
|
47 |
Xu Wenfang, Ma Lijuan, Ma Minna, et al. Spatial–temporal variability of snow cover and depth in the Qinghai–Tibetan Plateau[J]. Journal of Climate, 2017, 30(4): 1521-1533.
|
48 |
Wang Hui, Zhang Lu, Shi Xingdong, et al. Some new changes of the regional climate on the Tibetan Plateau since 2000[J]. Advances in Earth Science, 2021, 36(8): 785-796.
|
|
王慧, 张璐, 石兴东, 等. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
|
49 |
Li Ren, Zhao Lin, Ding Yongjian, et al. Impact of surface energy variation on thawing processes within active layer of permafrost[J]. Journal of Glaciology and Geocryology, 2011, 33(6): 1235-1242.
|
|
李韧, 赵林, 丁永建, 等. 地表能量变化对多年冻土活动层融化过程的影响[J]. 冰川冻土, 2011, 33(6): 1235-1242.
|
50 |
Li Ren, Zhao Lin, Ding Yongjian, et al. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region[J]. Chinese Science Bulletin, 2012, 57(35): 4609-4616.
|
51 |
Sun Shufen. Parameterization Study of Physical and Biochemical Mechanism in Land Surface Processes[M]. Beijing: China Meteorology Press, 2005: 1-73.
|
|
孙菽芬. 陆面过程的物理、生化机理和参数化模型[M]. 北京: 气象出版社, 2005: 1-73.
|
52 |
Li Wenjing, Luo Siqiong, Hao Xiaohua, et al. Observations of east Qinghai-Xizang Plateau snow cover effects on surface energy and water exchange in different seasons[J]. Plateau Meteorology, 2021, 40(3): 455-471.
|
|
李文静, 罗斯琼, 郝晓华, 等. 青藏高原东部不同季节积雪过程对地表能量和土壤水热影响的观测研究[J]. 高原气象, 2021, 40(3): 455-471.
|