1 |
Cheng Guodong, He Ping. Linearity engineering in permafrost areas[J]. Journal of Glaciolgy and Geocryology, 2001, 23(3): 213-217.
|
|
程国栋, 何平. 多年冻土地区线性工程建设[J]. 冰川冻土, 2001, 23(3): 213-217.
|
2 |
Ran Li. Design and research of the railway on Qinghai-Tibet Plateau[C]//China Association for Science and Technology. Compilation of invited presentations at the sessions of the 2001 annual academic conference of the Chinese Association for Science and Technology. Changchun: China Association for Science and Technology, Chinese Society for Soil and Water Conservation, 2001: 572-582.
|
|
冉理. 青藏高原铁路的设计与研究[C]//中国科学技术协会. 中国科协2001年学术年会分会场特邀报告汇编. 长春: 中国科学技术协会, 中国水土保持学会, 2001: 572-582.
|
3 |
Wu Qingbai, Liu Yongzhi, Zhang Jianming, et al. A review of recent frozen soil engineering in permafrost regions along Qinghai-Tibet Highway, China[J]. Permafrost and Periglacial Processes, 2002, 13(3): 199-205.
|
4 |
Jin Huijun, Wei Zhi, Wang Shaoling, et al. Assessment of frozen-ground conditions for engineering geology along the Qinghai-Tibet highway and railway, China[J]. Engineering Geology, 2008, 101(3/4): 96-109.
|
5 |
Cheng Guodong. Construction of Qinghai-Tibet railway with cooled roadbed[J]. China Railway Science, 2003, 24(3): 1-4.
|
|
程国栋. 用冷却路基的方法修建青藏铁路[J]. 中国铁道科学, 2003, 24(3): 1-4.
|
6 |
Ma Wei, Cheng Guodong, Wu Qingbai. Study and application of idea of dynamic design in Qinghai-Tibet Railway construction[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 537-540.
|
|
马巍, 程国栋, 吴青柏. 青藏铁路建设中动态设计思路及其应用研究[J]. 岩土工程学报, 2004, 26(4): 537-540.
|
7 |
Qi Jilin, Yao Xiaoliang, Yu Fan, et al. Study on thaw consolidation of permafrost under roadway embankment[J]. Cold Regions Science and Technology, 2012, 81: 48-54.
|
8 |
Doré G, Niu Fujun, Brooks H. Adaptation methods for transportation infrastructure built on degrading permafrost[J]. Permafrost and Periglacial Processes, 2016, 27(4): 352-364.
|
9 |
Tai Bowen, Liu Jiankun, Wang Tengfei, et al. Thermal characteristics and declining permafrost table beneath three cooling embankments in warm permafrost regions[J]. Applied Thermal Engineering, 2017, 123: 435-447.
|
10 |
Cheng Guodong, Wu Qingbai, Ma Wei. Innovative designs of permafrost roadbed for the Qinghai-Tibet Railway[J]. Science in China Series E: Technological Sciences, 2009, 39(1): 16-22.
|
|
程国栋, 吴青柏, 马巍. 青藏铁路主动冷却路基的工程效果[J]. 中国科学: E辑 技术科学, 2009, 39(1): 16-22.
|
11 |
Ma Wei, Cheng Guodong, Wu Qingbai. Construction on permafrost foundations: lessons learned from the Qinghai-Tibet railroad[J]. Cold Regions Science and Technology, 2009, 59(1): 3-11.
|
12 |
Yu Qihao, Niu Fujun, Pan Xicai, et al. Investigation of embankment with temperature-controlled ventilation along the Qinghai-Tibet Railway[J]. Cold Regions Science and Technology, 2008, 53(2): 193-199.
|
13 |
Zhang Mingyi, Lai Yuanming, Dong Yuanhong, et al. Laboratory investigation of the heat transfer characteristics of a two-phase closed thermosyphon[J]. Cold Regions Science and Technology, 2013, 95: 67-73.
|
14 |
Luo Jing, Niu Fujun, Wu Libo, et al. Field experimental study on long-term cooling performance of Sun-shaded embankments at the Qinghai-Tibet Railway, China[J]. Cold Regions Science and Technology, 2018, 145: 14-20.
|
15 |
Wu Qingbai, Zhao Shiyun, Ma Wei, et al. Monitoring and analysis of cooling effect of block-stone embankment for Qinghai-Tibet Railway[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1386-1390.
|
|
吴青柏, 赵世运, 马巍, 等. 青藏铁路块石路基结构的冷却效果监测分析[J]. 岩土工程学报, 2005, 27(12): 1386-1390.
|
16 |
Cheng Guodong, Sun Zhizhong, Niu Fujun. Application of the roadbed cooling approach in Qinghai-Tibet Railway engineering[J]. Cold Regions Science and Technology, 2008, 53(3): 241-258.
|
17 |
Mu Yanhu, Ma Wei, Wu Qingbai, et al. Cooling processes and effects of crushed rock embankment along the Qinghai-Tibet Railway in permafrost regions[J]. Cold Regions Science and Technology, 2012, 78: 107-114.
|
18 |
French H M. The periglacial environment[M].3rd ed. Chichester: John Wiley & Sons Ltd., 2007: 161.
|
19 |
Cheng Guodong, Lai Yuanming, Sun Zhizhong, et al. The ‘thermal semi-conductor’ effect of crushed rocks[J]. Permafrost and Periglacial Processes, 2007, 18(2): 151-160.
|
20 |
Ma Wei, Feng Guangli, Wu Qingbai, et al. Analyses of temperature fields under the embankment with crushed-rock structures along the Qinghai-Tibet Railway[J]. Cold Regions Science and Technology, 2008, 53(3): 259-270.
|
21 |
Ma Wei, Mu Yanhu, Li Guoyu, et al. Responses of embankment thermal regime to engineering activities and climate change along the Qinghai-Tibet Railway[J]. Scientia Sinica (Terrae), 2013, 43(3): 478-489.
|
|
马巍, 穆彦虎, 李国玉, 等. 多年冻土区铁路路基热状况对工程扰动及气候变化的响应[J]. 中国科学: 地球科学, 2013, 43(3): 478-489.
|
22 |
Mu Yanhu, Ma Wei, Niu Fujun, et al. Long-term thermal effects of air convection embankments in permafrost zones: case study of the Qinghai-Tibet Railway, China[J]. Journal of Cold Regions Engineering, 2018, 32(4): 05018004.
|
23 |
Wu Qingbai, Zhao Hongting, Zhang Zhongqiong, et al. Long-term role of cooling the underlying permafrost of the crushed rock structure embankment along the Qinghai-Xizang Railway[J]. Permafrost and Periglacial Processes, 2020, 31(1): 172-183.
|
24 |
Harris C, Arenson L U, Christiansen H H, et al. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses[J]. Earth-Science Reviews, 2009, 92(3/4): 117-171.
|
25 |
Smith S L, Riseborough D W. Modelling the thermal response of permafrost terrain to right-of-way disturbance and climate warming[J]. Cold Regions Science and Technology, 2010, 60(1): 92-103.
|
26 |
Wu Qingbai, Zhang Zhongqiong, Gao Siru, et al. Thermal impacts of engineering activities and vegetation layer on permafrost in different alpine ecosystems of the Qinghai-Tibet Plateau, China[J]. The Cryosphere, 2016, 10(4): 1695-1706.
|
27 |
Li Ren, Wu Qingbai, Li Xin, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2783-2795.
|
28 |
Wu Qingbai, Zhang Zhongqiong, Liu Ge. Relationships between climate warming and engineering stability of permafrost on Qinghai-Tibet Plateau[J]. Journal of Engineering Geology, 2021, 29(2): 342-352.
|
|
吴青柏, 张中琼, 刘戈. 青藏高原气候转暖与冻土工程的关系[J]. 工程地质学报, 2021, 29(2): 342-352.
|
29 |
Wu Qingbai, Liu Yongzhi, Yu Hui. Analysis of the variations of permafrost under ordinary embankment along the Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2007, 29(6): 960-969.
|
|
吴青柏, 刘永智, 于晖. 青藏铁路普通路基下部冻土变化分析[J]. 冰川冻土, 2007, 29(6): 960-968.
|
30 |
Mu Yanhu, Ma Wei, Wu Qingbai, et al. Thermal regime of conventional embankments along the Qinghai-Tibet Railway in permafrost regions[J]. Cold Regions Science and Technology, 2012, 70: 123-131.
|
31 |
Mu Yanhu, Ma Wei, Niu Fujun, et al. Monitoring and analyzing the thermal conditions of traditional embankments along the Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 953-961.
|
|
穆彦虎, 马巍, 牛富俊, 等. 青藏铁路多年冻土区普通路基热状况监测分析[J]. 冰川冻土, 2014, 36(4): 953-961.
|
32 |
Ma Wei, Wen Zhi, Sheng Yu, et al. Remedying embankment thaw settlement in a warm permafrost region with thermosyphons and crushed rock revetment[J]. Canadian Geotechnical Journal, 2012, 49(9): 1005-1014.
|
33 |
Hou Yandong, Wu Qingbai, Sun Zhizhong, et al. The coupled reinforcing effect of crushed rock slope protection and thermosyphons in Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2015, 37(1): 118-125.
|
|
侯彦东, 吴青柏, 孙志忠, 等. 青藏铁路碎石护坡-热管复合措施的补强效果研究[J]. 冰川冻土, 2015, 37(1): 118-125.
|
34 |
Mei Qihang, Chen Ji, Wang Jinchang, et al. Strengthening effect of crushed rock revetment and thermosyphons in a traditional embankment in permafrost regions under warming climate[J]. Advances in Climate Change Research, 2021, 12(1): 66-75.
|
35 |
Yu Wenbing, Liu Weibo, Chen Lin, et al. Evaluation of cooling effects of crushed rock under sand-filling and climate warming scenarios on the Tibet Plateau[J]. Applied Thermal Engineering, 2016, 92: 130-136.
|
36 |
Chen Lin, Yu Wenbing, Yi Xin, et al. Numerical simulation of heat transfer of the crushed-rock interlayer embankment of Qinghai-Tibet Railway affected by aeolian sand clogging and climate change[J]. Cold Regions Science and Technology, 2018, 155: 1-10.
|
37 |
Zhao Xiangqing, Cheng Jia, Han Longwu, et al. Monitoring and analysis of cooling effect of sand hazard riprap slope protection in permafrost regions along Qinghai-Tibet Railway[J]. Railway Standard Design, 2019, 63(11): 8-13.
|
|
赵相卿, 程佳, 韩龙武, 等. 青藏铁路多年冻土区片石护坡积沙段降温效果监测与分析[J]. 铁道标准设计, 2019, 63(11): 8-13.
|
38 |
Niu Fujun, Zhang Jianming, Zhang Zhao. Engineering geological characteristics and evaluations of permafrost in beiluhe testing field of Qinghai-Tibetan Railway[J]. Journal of Glaciology and Geocryology, 2002, 24(3): 264-269.
|
|
牛富俊,张建明,张钊.青藏铁路北麓河试验段冻土工程地质特征及评价[J]. 冰川冻土, 2002, 24(3): 264-269.
|
39 |
Chen Donggen, Wang Shuangjie, Chen Jianbing, et al. Study of the factors influencing the thickness of residual thawed interlayers and cooling effect of block-stone embankment[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 854-861.
|
|
陈冬根, 汪双杰, 陈建兵, 等. 融化夹层厚度影响因素分析与片块石路基降温效果研究[J]. 冰川冻土, 2014, 36(4): 854-861.
|
40 |
Xu Xiaoming, Wu Qingbai, Zhang Zhongqiong. Responses of active layer thickness on the Qinghai-Tibet Plateau to climate change[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 1-8.
|
|
徐晓明, 吴青柏, 张中琼. 青藏高原多年冻土活动层厚度对气候变化的响应[J]. 冰川冻土, 2017, 39(1): 1-8.
|
41 |
Wang Honglei, Sun Zhizhong, Liu Yongzhi, et al. Thermal state of embankment with thawed interlayer in permafrost regions of the Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2018, 40(5): 934-942.
|
|
王宏磊, 孙志忠, 刘永智, 等. 青藏铁路多年冻土区含融化夹层路基的热状态[J]. 冰川冻土, 2018, 40(5): 934-942.
|
42 |
Wang Honglei, Sun Zhizhong, Zhang Jianming, et al. Formation and evolution of suprapermafrost taliks beneath earth-filled embankments along the Qinghai-Tibet Railway in permafrost regions[J]. Cold Regions Science and Technology, 2021, 188: 103300.
|
43 |
Sheng Yu, Ma Wei, Wen Zhi, et al. Analysis of difference in thermal state between south faced slope and north faced slope of railway embankment in permafrost region[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3197-3201.
|
|
盛煜, 马巍, 温智, 张明义. 多年冻土区铁路路基阴阳坡面热状况差异分析[J]. 岩石力学与工程学报, 2005, 24(17): 3197-3201.
|
44 |
Yaling Chou, Sheng Yu, Wei Zhenming. Temperature and deformation differences between southern and northern slopes of highway embankment on permafrost[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1896-1903.
|
|
丑亚玲, 盛煜, 韦振明. 多年冻土区公路路基阴阳坡温度及变形差异分析[J]. 岩石力学与工程学报, 2009, 28(9): 1896-1903.
|
45 |
Tai Bowen, Liu Jiankun, Chang Dan. Experimental and numerical investigation on the sunny-shady slopes effect of three cooling embankments along an expressway in warm permafrost region, China[J]. Engineering Geology, 2020, 269: 105545.
|
46 |
Luo Xiaoxiao, Yu Qihao, Ma Qinguo, et al. Study on the heat and deformation characteristics of an expressway embankment with shady and sunny slopes in warm and ice-rich permafrost regions[J]. Transportation Geotechnics, 2020, 24: 100390.
|
47 |
Song Yi, Jin Long, Peng Hui, et al. Development of thermal and deformation stability of Qinghai-Tibet Highway under sunny-shady slope effect in southern Tanglha region in recent decade[J]. Soils and Foundations, 2020, 60(2): 342-355.
|
48 |
Yang Yaoxian, Hu Zeyong, Lu Fuquan, et al. Progress of recent 60 years' climate change and its environmental impacts on the Qinghai-Xizang plateau[J]. Plateau Meteorology, 2022, 41(1): 1-10.
|
|
杨耀先, 胡泽勇, 路富全, 等. 青藏高原近60年来气候变化及其环境影响研究进展[J]. 高原气象, 2022, 41(1): 1-10.
|
49 |
Wu Jichun, Sheng Yu, Wu Qingbai, et al. Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau[J]. Science in China (Series D: Earth Sciences), 2009, 39(11): 1570-1578.
|
|
吴吉春, 盛煜, 吴青柏, 等. 青藏高原多年冻土退化过程及方式[J]. 中国科学(D辑: 地球科学), 2009, 39(11): 1570-1578.
|