冰川冻土 ›› 2022, Vol. 44 ›› Issue (6): 1807-1819.doi: 10.7522/j.issn.1000-0240.2022.0157
王海航1(), 周扬2, 赵晓东1, 王建州1, 周国庆1,2(
)
收稿日期:
2022-03-21
修回日期:
2022-07-31
出版日期:
2022-12-25
发布日期:
2023-01-18
通讯作者:
周国庆
E-mail:wangstd@163.com;gqz@cumt.edu.cn
作者简介:
王海航,博士研究生,主要从事冻土物理力学与工程研究. E-mail: wangstd@163.com
基金资助:
Haihang WANG1(), Yang ZHOU2, Xiaodong ZHAO1, Jianzhou WANG1, Guoqing ZHOU1,2(
)
Received:
2022-03-21
Revised:
2022-07-31
Online:
2022-12-25
Published:
2023-01-18
Contact:
Guoqing ZHOU
E-mail:wangstd@163.com;gqz@cumt.edu.cn
摘要:
全面掌握冻土抗拉强度研究现状是进一步深化研究的基础。首先,分类介绍了目前可用于冻土抗拉强度测试的各典型方法,详细阐述了不同测试方法的试验条件、试样形式和受力机理,对比列举了典型抗拉强度测试方法优缺点。其次,归纳总结了基于不同试验方法已进行的研究工作和不足。然后,全面分析了温度、含水量、加载(变形)速率、土质及试样尺寸等影响因素对冻土抗拉强度变化规律影响的最新研究进展。最后,提出发展并完善冻土抗拉强度研究方法和体系,增加高温冻土抗拉强度测试研究,从而获得更加准确模拟冻土张拉破坏行为的展望。指出应结合冻土微细观结构和数字图像技术研究手段,深入揭示冻土抗拉强度形成内因和张拉破坏机制。阐述以多影响因素试验为基础,探寻更为完善的冻土抗拉强度预测方法。同时,拓展冻土抗拉强度的现场原位测试研究,加强室内外双轨并行式研究思路。通过对国内外研究现状及发展趋势的分析,为冻土抗拉强度试验研究、冻胀理论模型完善、寒区岩土工程设计和人工冻结加固工程等提供参考和指导。
中图分类号:
王海航, 周扬, 赵晓东, 王建州, 周国庆. 冻土抗拉强度研究现状与展望[J]. 冰川冻土, 2022, 44(6): 1807-1819.
Haihang WANG, Yang ZHOU, Xiaodong ZHAO, Jianzhou WANG, Guoqing ZHOU. Research status and prospect of tensile strength of frozen soil[J]. Journal of Glaciology and Geocryology, 2022, 44(6): 1807-1819.
表1
单轴拉伸法测试冻土抗拉强度汇总"
土质 | 含水量/% | 温度范围/℃ | 加载速率/(mm·min-1) | 研究内容 | 文献来源 |
---|---|---|---|---|---|
粉土 | — | 0~-57 | — | 单轴拉伸法测试冻土抗拉强度可行性及强度与温度和加载速率关系 | [ |
黄土 | 饱和 | -2、-5、-10 | 0.005~20 | 分析饱水冻结黄土峰值应力、破坏应变和破坏时间特性 | [ |
黄土 | 饱和 | -5、-10、-15 | 0.168~9.72 | 应变率及温度对冻结黄土抗拉强度的影响规律 | [ |
黄土 | 饱和 | -2、-5、-10 | — | 冻结黄土抗拉强度与应变率和温度的关系 | [ |
黏土 | 饱和 | 0~-2 | 0.34、2.3 | 高温冻土抗拉强度形成机理及抗拉强度与孔隙冰含量的关系 | [ |
粉质黏土 | 14~25 | -2~-20 | 1 | 建立抗拉强度与温度和初始含水量关系的数学模型 | [ |
粉砂 | 12 | -2~-20 | 1 | 分析橡胶掺入量对粉砂土强度影响规律以确定最佳混合比 | [ |
粉土 | 13~20 | -2~-10 | 2.4 | 探究冻结作用下土与结构接触面抗拉强度的影响因素及变化规律 | [ |
表2
径向压裂法测试冻土抗拉强度汇总"
土质 | 含水量/% | 温度范围/℃ | 加载速率/(mm·min-1) | 研究内容 | 文献来源 |
---|---|---|---|---|---|
硅砂 | 饱和 | -6 | — | 冻土抗拉强度与加载速率、温度以及试样尺寸关系 | [ |
黄土 | 饱和 | -2、-5、-10 | 0.005~20 | 径向压裂法测试冻土抗拉强度可行性及强度与温度和加载速率关系 | [ |
黄土 | 饱和 | -2~-15 | 0.005~20 | 试样长度对径向压裂法测定结果的影响及计算方法修正 | [ |
黏土 砂土 | 30 16 | -7、-12、-17 | — | 径向压裂法测试冻土抗拉强度可行性及强度与温度和土质关系 | [ |
粉质黏土 | 14~25 | -1~-24 | 1 | 建立抗拉强度与温度和初始含水量关系的数学模型 | [ |
粉土 | 饱和 | -0.1~-2 | 2 | 高温冻土抗拉强度与未冻水含量和体积含冰量的定量关系 | [ |
粉土 | 富冰 | -0.5~-2 | 0.1、1.25、4 | 高温冻土抗拉强度与温度和加载速率的关系 | [ |
膨胀土 | 21.7~25.7 | -2~-15 | 0.2~20 | 温度、加载速率、干密度以及含水量对抗拉强度的影响规律 | [ |
粉质黏土 黄土、砂土 | 最优含水量 | -1~-20 | 8.25 | 分析冻土压拉强度差异及抗拉强度随土质特性和温度的变化规律 | [ |
混杂岩土 | 25 | -10、-20、-30 | 0.02 | 分析抗拉强度特性与温度和含水量关系以及混杂岩土破裂面特征 | [ |
粉质黏土 | 3.5~21 | 0~-12 | 1 | 分析冻土抗拉强度与初始含水量和温度的关系 | [ |
粉土 | 饱和 | -1、-6、-10、-15 | 0.3、1、10、50、100 | 分析试样尺寸、温度、加载速率和预制裂缝对抗拉强度影响规律 | [ |
表3
典型抗拉强度测试方法对比"
方法分类 | 试验方法 | 试样截面 | 优缺点 |
---|---|---|---|
直接拉伸法 | 单轴拉伸法 | ![]() | 1、应力分布简单且明确 2、试样成型困难且不均匀 3、易在截面变化处应力集中 |
三轴拉伸法 | ![]() | 1、可模拟真实应力状态 2、装置与原理较为复杂 3、结果强烈依赖应力路径 4、不易出现纯拉断破坏模式 | |
间接拉伸法 | 径向压裂法 | ![]() | 1、试样成型简单且均匀 2、破裂面应力分布不均 3、荷载点易出现应力集中 4、理论推导过程假设较多 |
轴向压裂法 | ![]() | 1、试样成型简单且均匀 2、破裂面应力分布不均 3、荷载点易出现应力集中 4、理论推导过程假设较多 | |
土梁弯折法 | ![]() | 1、试验过程简单可控 2、试样较大温度均匀性差 3、破坏失效往往为断裂破坏 4、断裂强度近似代替抗拉强度 | |
液压劈裂法 | ![]() | 1、试样制备节省土料 2、应力分布简单且明确 3、试样成型相对容易且均匀 |
1 | Xu Xiaozu, Wang Jiacheng, Zhang Lixin. Physics of frozen soil[M]. 2nd ed. Beijing: Science Press, 2010. |
徐敩祖, 王家澄, 张立新. 冻土物理学[M]. 2版. 北京: 科学出版社, 2010. | |
2 | Lu Xianlong, Chen Xiangsheng, Chen Xi. Risk prevention and control of artificial ground freezing[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2308-2314. |
鲁先龙, 陈湘生, 陈曦. 人工地层冻结法风险预控[J]. 岩土工程学报, 2021, 43(12): 2308-2314. | |
3 | Ma Wei, Wang Dayan. Status quo and reflections of the deep frozen soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1123-1130. |
马巍, 王大雁. 深土冻土力学的研究现状与思考[J]. 岩土工程学报, 2012, 34(6): 1123-1130. | |
4 | Rui D, Wu Z, Ji M, et al. Remediation of Cd-and Pb-contaminated clay soils through combined freeze-thaw and soil washing[J]. Journal of Hazardous Materials, 2019, 369: 87-95. |
5 | Qi Jilin, Dang Boxiang, Xu Guofang, et al. A state of the art for strength of frozen soils[J]. Journal of Beijing University of Civil Engineering and Architecture, 2016, 32(3): 89-95. |
齐吉琳, 党博翔, 徐国方, 等. 冻土强度研究的现状分析[J]. 北京建筑大学学报, 2016, 32(3): 89-95. | |
6 | Lai Y, Xu X, Dong Y, et al. Present situation and prospect of mechanical research on frozen soils in China[J]. Cold Regions Science and Technology, 2013, 87: 6-18. |
7 | Wang Tianliang, He Yameng, Wu Zhen, et al. Effect of groundwater seepage on artificial freezing process in gravel layer[J]. China Railway Science, 2022, 43(1):1-8. |
王天亮, 何亚梦, 吴镇, 等. 地下水渗流对砾石地层人工冻结过程的影响[J]. 中国铁道科学, 2022, 43(1): 1-8. | |
8 | Ji Enyue, Cheng Shengshui, Fu Zhongzhi. Experimental investigations on tensile cracking mechanical characteristics of gravelly core material[J]. Rock and Soil Mechanics, 2019, 40(12): 4777-4782. |
吉恩跃, 陈生水, 傅中志. 掺砾心墙料拉裂力学特性试验研究[J]. 岩土力学, 2019, 40(12): 4777-4782. | |
9 | Cui P, Jia Y. Mountain hazards in the Tibetan Plateau: research status and prospects[J]. National Science Review, 2015, 2(4): 397-399. |
10 | Hao Junming, Wu Tonghua, Li Ren, et al. A case study on earthflow in Yushu, Qinghai Province on the northeastern Tibetan Plateau: landslide features and cause analysis[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 447-456. |
郝君明, 吴通华, 李韧, 等. 青藏高原东北部青海玉树泥流滑坡特征和成因分析[J]. 冰川冻土, 2020, 42(2): 447-456. | |
11 | Chai Mingtang, Ma Wei, Mu Yanhu. Distribution and engineering effect of supra-permafrost groundwater: review and prospect[J]. Journal of Glaciology and Geocryology, 2021, 43(6): 1794-1808. |
柴明堂, 马巍, 穆彦虎. 冻结层上水的分布及工程影响研究现状与展望[J]. 冰川冻土, 2021, 43(6): 1794-1808. | |
12 | Huang Xubin, Sheng Yu, Huang Long, et al. Study of mechanical behaviors of pile foundation with enlarged end in seasonally frozen ground regions: progress and review[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1220-1228. |
黄旭斌, 盛煜, 黄龙, 等. 季节冻土区扩底单桩受力性能研究进展与展望[J]. 冰川冻土, 2020, 42(4): 1220-1228. | |
13 | Zhou Yang, Zhou Guoqing, Wang Yijiang. Separate ice frost heave model for coupled moisture and heat transfer in saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1746-1751. |
周扬, 周国庆, 王义江. 饱和土水热耦合分离冰冻胀模型研究[J]. 岩土工程学报, 2010, 32(11): 1746-1751. | |
14 | Liu Yuhang, Li Dongqing, Ming Feng. Review on driving forces of soil fracture during ice lens formation process[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 657-668. |
刘宇航, 李东庆, 明锋. 冰透镜体形成过程中的土体破裂驱动力研究综述[J]. 冰川冻土, 2019, 41(3): 657-668. | |
15 | Ple O, Lê T N H. Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay[J]. Geotextiles and Geomembranes, 2012, 32: 111-116. |
16 | Cui Meng, Han Shangyu, Hong Baoning. Development and application of a new geotechnical device for direct tension test[J]. Rock and Soil Mechanics, 2017, 38(6): 1832-1840. |
崔猛, 韩尚宇, 洪宝宁. 新型土工单轴拉伸试验装置的研制及应用[J]. 岩土力学, 2017, 38(6): 1832-1840. | |
17 | Wang J J, Zhu J G, Chiu C F, et al. Experimental study on fracture toughness and tensile strength of a clay[J]. Engineering Geology, 2007, 94(1/2): 65-75. |
18 | Li J, Tang C, Wang D, et al. Effect of discrete fibre reinforcement on soil tensile strength[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(2): 133-137. |
19 | Rong Dezheng, Tang Chaosheng, Zeng Hao, et al. Evaporation process and tensile behavior of fiber-reinforced rammed earth[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 670-678. |
荣德政, 唐朝生, 曾浩, 等. 纤维加筋土坯的蒸发过程及抗拉强度特性[J]. 岩土工程学报, 2021, 43(4): 670-678. | |
20 | Zhang Yun, Wang Huimin, Yan Lifen. Test research on tensile properties of compacted clay[J]. Rock and Soil Mechanics, 2013, 34(8): 2151-2157. |
张云, 王惠敏, 鄢丽芬. 击实黏土单轴拉伸特性试验研究[J]. 岩土力学, 2013, 34(8): 2151-2157. | |
21 | Lu Lina, Fan Henghui, Chen Hua, et al. Influencing factors for uniaxial tensile strength of dispersive soils[J]. Chinese Journal of Geotechnical Engineering, 2014(6): 1160-1166. |
路立娜, 樊恒辉, 陈华, 等. 分散性土单轴抗拉强度影响因素试验研究[J]. 岩土工程学报, 2014(6): 1160-1166. | |
22 | Cai Guoqing, Che Ruijie, Kong Xiao’ang, et al. Experimental investigation on tensile strength of unsaturated fine sands[J]. Journal of Hydraulic Engineering. 2017, 48(5): 623-630. |
蔡国庆, 车睿杰, 孔小昂, 等. 非饱和砂土抗拉强度的试验研究[J]. 水利学报, 2017, 48(5): 623-630. | |
23 | Zhang Zhitao, Chen Shengshui, Ji Enyue, et al. Study on tensile fracture properties of gravel soil reinforced by polypropylene fiber[J]. Rock and Soil Mechanics, 2021, 42(10): 2713-2721. |
张志韬, 陈生水, 吉恩跃, 等. 聚丙烯纤维加筋砾质黏土的拉伸断裂特性研究[J]. 岩土力学, 2021, 42(10): 2713-2721. | |
24 | Zhang Xutao, Zhang Qiangyong, Gao Qiang, et al. Development and application of geotechnical direct tension test devices[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1309-1315. |
张绪涛, 张强勇, 高强, 等. 土工直接拉伸试验装置的研制及应用[J]. 岩土工程学报, 2014, 36(7): 1309-1315. | |
25 | Huang Wei, Tao Yakun, Liu Qingbing, et al. Experimental study on tensile strength of remolded loess in Xinjiang Ili valley[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2021, 49(5): 92-97. |
黄维, 陶亚坤, 刘清秉, 等. 新疆伊犁谷地重塑黄土抗拉强度试验研究[J]. 华中科技大学学报(自然科学版), 2021, 49(5): 92-97. | |
26 | Chen Zhihao, Liu Jin, Qian Wei, et al. Experimental study on tensile strength of polymer curing agent /fiber modified sand[J]. Journal of Engineering Geology, 2019, 27(2): 350-359. |
陈志昊, 刘瑾, 钱卫, 等. 高分子固化剂/纤维改良砂土的抗拉强度试验研究[J]. 工程地质学报, 2019, 27(2): 350-359. | |
27 | Haynes F D. Strength and deformation of frozen silt[C]//Proceedings of the Third International Conference on Permafrost, Edmonton, Alberta, Canada: 1978. |
28 | Shen Zhongyan, Peng Wanwei, Liu Yongzhi. Tensile strength of frozen saturated loess[J]. Journal of Glaciology and Geocryology, 1995,17(4): 315-321. |
沈忠言, 彭万巍, 刘永智. 冻结黄土抗拉强度的试验研究[J]. 冰川冻土, 1995, 17(4): 315-321. | |
29 | Zhu Yuanlin, Peng Wanwei, Wang Xianyao, et al. Effect of strain rate and temperature on tensile strength of frozen loess[J]. Journal of Glaciology and Geocryology, 1995(): 71-75. |
朱元林, 彭万巍, 王显耀, 等. 应变率及温度对冻结黄土抗拉强度的影响[J]. 冰川冻土, 1995(): 71-75. | |
30 | Peng Wanwei. Tensile strength of frozen loess varying with strain rate and temperature[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(3): 31-33. |
彭万巍. 冻结黄土抗拉强度与应变率和温度的关系[J]. 岩土工程学报, 1998, 20(3): 31-33. | |
31 | Akagawa S, Nishisato K. Tensile strength of frozen soil in the temperature range of the frozen fringe[J]. Cold regions science and technology, 2009, 57(1): 13-22. |
32 | Christ M, Kim Y C. Experimental study on the physical-mechanical properties of frozen silt[J]. KSCE Journal of Civil Engineering, 2009, 13(5): 317-324. |
33 | Christ M, Park J B. Laboratory determination of strength properties of frozen rubber-sand mixtures[J]. Cold Regions Science and Technology, 2010, 60(2): 169-175. |
34 | Sun T, Gao X, Liao Y, et al. Experimental study on adfreezing strength at the interface between silt and concrete[J]. Cold Regions Science and Technology, 2021, 190: 103346. |
35 | Gao Xiaojing, Sun Tiecheng, Li Xiaokang, et al. Experimental study on tensile strength of silt-concrete interface under frost action[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 499-507. |
高晓静, 孙铁成, 李晓康, 等. 冻结作用下粉土-混凝土接触面抗拉强度试验研究[J]. 冰川冻土, 2020, 42(2): 499-507. | |
36 | Zhou Hongkui. The mechanism of fracture of soil samples in triaxial tensile test[J]. Chinese Journal of Geotechnical Engineering, 1984, 6(3): 11-23. |
周鸿逵. 三轴拉伸试验中试样的断裂机理[J]. 岩土工程学报, 1984, 6(3): 11-23. | |
37 | Zhu Chonghui, Liu Junmin, Yan Baowen, et al. Experimental study on relationship between tensile and shear strength of unsaturation clay earth material[J]. Chinese Journal of Rock Mechanics and Engineering, 2008(): 3453-3458. |
朱崇辉, 刘俊民, 严宝文, 等. 非饱和黏性土的抗拉强度与抗剪强度关系试验研究[J]. 岩石力学与工程学报, 2008(): 3453-3458. | |
38 | Chen Youliang, Wang Ming, Xu Shan, et al. Tensile and compressive strength tests on artifical frozen soft clay in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1046-1051. |
陈有亮, 王明, 徐珊, 等. 上海人工冻结软黏土抗压抗拉强度试验研究[J]. 岩土工程学报, 2009, 31(7): 1046-1051. | |
39 | Chen Y, Azzam R, Wang M, et al. The uniaxial compressive and tensile tests of frozen saturated clay in Shanghai area[J]. Environmental Earth Sciences, 2011, 64(1): 29-36. |
40 | Song Bingtang, Liu Enlong, Zhang De, et al. Experimental study on the mechanical properties of warm frozen silt soils[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 595-605. |
宋丙堂, 刘恩龙, 张德, 等. 高温冻结粉土力学特性试验研究[J]. 冰川冻土, 2019, 41(3): 595-605. | |
41 | ISRM. Suggested Methods for Determining Tensile Strength of Rock Materials[J]. International Journal of Rock Mechanics and Mining Sciences. 1978, 15(3): 99-103. |
42 | Bragg R A, Andersland O B. Strain rate, temperature, and sample size effects on compression and tensile properties of frozen sand[J]. Engineering Geology, 1981, 18(1/2/3/4): 35-46. |
43 | Shen Zhongyan, Peng Wanwei, Liu Yongzhi. The effect of length of specimen on the results in radial splitting test[J]. Journal of Glaciology and Geocryology, 1994, 16(4): 327-332. |
沈忠言, 彭万巍, 刘永智. 径压法冻土抗拉强度测定中试样长度的影响[J]. 冰川冻土, 1994, 16(4): 327-332. | |
44 | Shen Zhongyan, Liu Yongzhi, Peng Wanwei, et al. Application of the radial-splitting method to determining tensile strength of frozen soil[J]. Journal of Glaciology and Geocryology, 1994, 16(3): 224-231. |
沈忠言, 刘永智, 彭万巍, 等. 径向压裂法在冻土抗拉强度测定中的应用[J]. 冰川冻土, 1994, 16(3): 224-231. | |
45 | Ma Qinyong. Tensile strength, uniaxial compressive strength test on artificially frozen soils [J]. Rock and Soil Mechanics, 1996, 17(3): 76-81. |
马芹永. 人工冻土单轴抗拉、抗压强度的试验研究[J]. 岩土力学, 1996, 17(3): 76-81. | |
46 | Zhao Jingfeng. An experimental study on the relationship between tensile strength and temperature and water ratio of frozen soil[J]. Geology and Exploration, 2011, 47(6): 1158-1161. |
赵景峰. 冻土抗拉强度与冻温及含水率关系的试验研究[J]. 地质与勘探, 2011, 47(6): 1158-1161. | |
47 | Zhou G, Hu K, Zhao X, et al. Laboratory investigation on tensile strength characteristics of warm frozen soils[J]. Cold regions science and technology, 2015, 113: 81-90. |
48 | Lu Guilin. Experimental study on mechanical properties for warm frozen soils in permafrost regions[D]. Xuzhou: China University of Mining and Technology, 2015. |
路贵林. 多年冻土区高温冻土力学特性试验研究[D]. 徐州: 中国矿业大学, 2015. | |
49 | Zhang Yonggan, Lu Yang, Liu Sihong, et al. Experimental study on tensile strength of frozen expansive soils based on Brazilian splitting tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2046-2054. |
张勇敢, 鲁洋, 刘斯宏, 等. 基于巴西劈裂试验的冻结膨胀土拉伸特性研究[J]. 岩土工程学报, 2021, 43(11): 2046-2054. | |
50 | Huang Xing, Li Dongqing, Ming Feng, et al. Experimental study of the compressive and tensile strengths of artificial frozen soil[J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1346-1352. |
黄星, 李东庆, 明锋, 等. 冻土的单轴抗压、抗拉强度特性试验研究[J]. 冰川冻土, 2016, 38(5): 1346-1352. | |
51 | Hu Feng, Li Zhiqing, Sun Kai, et al. Comparison on the compressive and tensile failure properties of frozen soil-rock mixture, ice-rock mixture and frozen soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(): 2923-2934. |
胡峰, 李志清, 孙凯, 等. 冻土石混合体、冰石混合物和冻土在压、拉作用下的破坏特征对比[J]. 岩石力学与工程学报, 2021, 40(): 2923-2934. | |
52 | Hu F, Li Z, Tian Y, et al. Failure patterns and morphological soil-rock interface characteristics of frozen soil-rock mixtures under compression and tension[J]. Applied Sciences, 2021, 11(1): 461. |
53 | You Z, Ma Y, Wang Z, et al. Tensile strength variation of a silty clay under different temperature and moisture conditions[J]. Cold Regions Science and Technology, 2021, 189: 103314. |
54 | Shen M, Zhou Z, Ma W. Tensile behaviors of frozen subgrade soil[J]. Bulletin of Engineering Geology and the Environment. 2022, 81(3): 1-27. |
55 | Wu Xuyang, Liang Qingguo, Niu Fujun, et al. Deformation failure mechanism in tensile test on remolded loess from Jiuzhou, Lanzhou[J]. Journal of Glaciology and Geocryology, 2017, 39(4): 842-849. |
吴旭阳, 梁庆国, 牛富俊, 等. 兰州九州重塑黄土的抗拉变形破坏机理[J]. 冰川冻土, 2017, 39(4): 842-849. | |
56 | Shen Zhongyan, Peng Wanwei, Liu Yongzhi, et al. Preliminary research on axial splitting method for determining tensile strength of frozen soil[J]. Journal of Glaciology and Geocryology, 1995, 17(1): 33-39. |
沈忠言, 彭万巍, 刘永智, 等. 轴向压裂法测定冻土抗拉强度初步研究[J]. 冰川冻土, 1995, 17(1): 33-39. | |
57 | Yin S, Wu S, Liu M, et al. Study on influencing factors of unconfined penetration test based on orthogonal design[J]. Arabian Journal of Geosciences, 2021, 14(2): 1-12. |
58 | Kolesnikov G, Gavrilov T. Method for estimating tensile stresses and elastic modulus of frozen soil with evolving crack[C]//International Scientific Siberian Transport Forum. Springer, Cham, 2019: 296-305. |
59 | Azmatch T F, Sego D C, Arenson L U, et al. Tensile strength and stress-strain behaviour of Devon silt under frozen fringe conditions[J]. Cold Regions Science and Technology, 2011, 68(1/2): 85-90. |
60 | Yamamoto Y, Springman S M. Three-and four-point bending tests on artificial frozen soil samples at temperatures close to 0°C [J]. Cold Regions Science and Technology, 2017, 134: 20-32. |
61 | Too J L, Cheng A, Khoo B C, et al. Hydraulic fracturing in a penny-shaped crack. Part I: methodology and testing of frozen sand[J]. Journal of natural gas science and engineering, 2018, 52: 609-618. |
62 | Tao L, Zhi H, Zhigang Z, et al. Artificial frozen soil bending test and bending property[C]//E3S Web of Conferences. EDP Sciences, 2020, 165: 03028. |
63 | Yu Changyi, Liu Aimin, Guo Bingchuan, et al. Different tensile tests on difference of strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(): 157-160. |
于长一, 刘爱民, 郭炳川, 等. 冻土不同拉伸试验强度差异性研究[J]. 岩土工程学报, 2019, 41(): 157-160. | |
64 | Hu Kun. Development of separated ice model coupled heat and moisture transfer in freezing soils[D]. Xuzhou: China University of Mining and Technology, 2011. |
胡坤. 冻土水热耦合分离冰冻胀模型的发展[D]. 徐州: 中国矿业大学, 2011. | |
65 | Li Y, Ling X, Su L, et al. Tensile strength of fiber reinforced soil under freeze-thaw condition[J]. Cold Regions Science and Technology, 2018, 146: 53-59. |
[1] | 徐岳震, 申明德, 周志伟, 马巍, 李国玉. 青藏铁路高温多年冻土区典型路基的长期热稳定性研究[J]. 冰川冻土, 2022, 44(6): 1784-1795. |
[2] | 袁俊, 赵杰, 唐冲, 甘仁钧. 冻土区输电线路桩基础抗拔承载特性数值模拟研究[J]. 冰川冻土, 2022, 44(6): 1842-1852. |
[3] | 胡越中, 王广军, 杜海波, 梁四海, 罗银飞, 董高峰, 彭红明. 北麓河流域不同植被覆盖条件下土壤冻融过程中地表土壤含水量变化[J]. 冰川冻土, 2022, 44(6): 1925-1934. |
[4] | 姚明星, 赵锐, 杨林川, 齐华, 廖昕, 孟祥连, 周福军. 基于GWRRK的多年冻土地温空间分布模拟研究[J]. 冰川冻土, 2022, 44(5): 1570-1580. |
[5] | 宋锦坡, 崔宏环, 胡淑旗, 高鹏飞. 寒区高吸力非饱和土的破坏准则研究[J]. 冰川冻土, 2022, 44(5): 1581-1592. |
[6] | 陆妍, 喻文兵, 张天祺, 刘伟博, 邱凯驰. 多年冻土区土壤多环芳烃污染研究进展[J]. 冰川冻土, 2022, 44(5): 1640-1652. |
[7] | 雷乐乐, 王大雁, 王永涛, 张斌龙. 冻结黏土空心圆柱试样制样方法[J]. 冰川冻土, 2022, 44(5): 1674-1680. |
[8] | 庞小冲, 朱小明, 穆彦虎, 张坤, 张力杰, 郑波, 李凌洁. 寒区隧道保温设防长度工程实践与研究进展综述[J]. 冰川冻土, 2022, 44(3): 998-1010. |
[9] | 杜玉霞, 明锋, 赵淑萍, 张淑娟, 杨旭. 温度对土壤介电常数的影响规律研究[J]. 冰川冻土, 2022, 44(2): 634-642. |
[10] | 游艳辉, 李党民, 单波, 田生祥, 王新斌, 俞祁浩. 高密度电法在输电线路塔基基础附近多年冻土探测中的应用[J]. 冰川冻土, 2022, 44(2): 684-692. |
[11] | 焦亚青, 宋立全, 臧淑英, 孙超峰, 鲁博权. 大兴安岭多年冻土泥炭地无机氮动态对秋季冻融的响应[J]. 冰川冻土, 2022, 44(2): 387-401. |
[12] | 孙超峰, 宋立全, 臧淑英, 焦亚青, 鲁博权. 大兴安岭秋季冻结期土壤水热变化对多年冻土泥炭地可溶性有机碳的影响[J]. 冰川冻土, 2022, 44(2): 402-414. |
[13] | 卫丁, 赵廷虎, 穆彦虎, 刘富荣, 丁泽琨, 刘自成. 气候变暖背景下沱沱河盆地多年冻土与融区地温过程研究[J]. 冰川冻土, 2022, 44(2): 427-436. |
[14] | 申明德, 周志伟, 马巍. 冻土长期强度的衰减特征及屈服准则[J]. 冰川冻土, 2022, 44(2): 437-447. |
[15] | 刘志云, 钟振涛, 崔福庆, 陈建兵, 彭惠. 青藏工程走廊冻融土热扩散系数特性与预测模型研究[J]. 冰川冻土, 2022, 44(2): 458-469. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000