1 |
Ma Wei, Wang Dayan. Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-640.
|
|
马巍, 王大雁. 中国冻土力学研究50 a回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-640.
|
2 |
Liu Guimin, Zhang Bo, Wang Li, et al. Permafrost region and permafrost area in the globe and China[J/OL]. Earth Science, 2022 [2022-05-03]. .
|
|
刘桂民, 张博, 王莉, 等. 全球和我国多年冻土分布范围和实际面积研究进展[J/OL]. 地球科学, 2022 [2022-05-03]. .
|
3 |
Roman L T, Zhang Ze. Effect of cycles of freezing and thawing on the physical and mechanical properties of moraine loam[J]. Foundation and Soil Mechanics, 2010, 47(3): 96-101.
|
4 |
Shen Jiejie, Wang Qing, Chen Yating, et al. Evolution process of the microstructure of saline soil with different compaction degrees during freeze-thaw cycles[J]. Engineering Geology, 2022, 304: 106699.
|
5 |
Tang Liyun, Li Gang, Luo Tao, et al. Mechanism of shear strength deterioration of soil-rock mixture after freeze-thaw cycles[J]. Cold Regions Science and Technology, 2022, 200: 103585.
|
6 |
Zhou Zhiwei, Li Guoyu, Shen Mingde, et al. Dynamic responses of frozen subgrade soil exposed to freeze-thaw cycles[J]. Soil Dynamics and Earthquake Engineering, 2022, 152: 107010.
|
7 |
Liu Bo, Ma Renming, Fan Haoming. Evaluation of the impact of freeze-thaw cycles on pore structure characteristics of black soil using X-ray computed tomography[J]. Soil and Tillage Research, 2021, 206: 104810.
|
8 |
Wang Yubin, Huang Ze, Qian Jiaxin, et al. Freeze-thaw cycles aggravated the negative effects of moss-biocrusts on hydraulic conductivity in sandy land[J]. Catena, 2021, 207: 105638.
|
9 |
Li Guoyu, Wang Fei, Ma Wei, et al. Variations in strength and deformation of compacted loess exposed to wetting-drying and freeze-thaw cycles[J]. Cold Regions Science and Technology, 2018, 151: 159-167.
|
10 |
Mandelbrot B B. Fractals: form, chance and dimension[M]. San Francisco, CA, USA: W. H. Freeman & Co., 1978.
|
11 |
Tao Gaoliang, Zhang Jiru. Two categories of fractal models of rock and soil expressing volume and size-distribution of pores and grains[J]. Chinese Science Bulletin, 2009, 54(23): 4458-4467.
|
|
陶高粱, 张季如. 表征孔隙及颗粒体积与尺度分布的两类岩土体分形模型[J]. 科学通报, 2009, 54(6): 838-846.
|
12 |
Du Jun, Hou Kepeng, Liang Wei, et al. Experimental study of compaction characteristics and fractal feature in crushing of coarse-grained soils[J]. Rock and Soil Mechanics, 2013, 34(): 155-161.
|
|
杜俊, 侯克鹏, 梁维, 等. 粗粒土压实特性及颗粒破碎分形特征试验研究[J]. 岩土力学, 2013, 34(): 155-161.
|
13 |
Peng Ruidong, Yang Yancong, Ju Yang, et al. Computation of fractal dimension of rock pores based on gray CT images[J]. Chinese Science Bulletin, 2011, 56(31): 3346-3357.
|
|
彭瑞东, 杨彦从, 鞠杨, 等. 基于灰度CT图像的岩石孔隙分形维数计算[J]. 科学通报, 2011, 56(26): 2256-2266.
|
14 |
Li Xue, Liu Jiankun, Li Jinze. Fractal dimension, particle shape, and particle breakage analysis for calcareous sand[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(3): 106.
|
15 |
Chen Xin, Zhang Ze, Li Dongqing. Study on the pore features of freezing-thawing loess based on different fractal models[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1238-1248.
|
|
陈鑫, 张泽, 李东庆. 基于不同分形模型的冻融黄土孔隙特征研究[J]. 冰川冻土, 2020, 42(4): 1238-1248.
|
16 |
Yu Qianmi. Study on evolutionary regularity of particle breakage coarse-grained soil[D]. Beijing: Beijing Jiaotong University, 2018: 27-34.
|
|
于钱米. 粗粒土颗粒破碎演化规律研究[D]. 北京: 北京交通大学, 2018: 27-34.
|
17 |
Wang Zhan, Zhang Yulong, Yu Na, et al. Effects of freezing-thawing on characteristics and fractal dimension of soil microaggregates[J]. Acta Pedologica Sinica, 2013, 50(1): 83-88.
|
|
王展, 张玉龙, 虞娜, 等. 冻融作用对土壤微团聚体特征及分形维数的影响[J]. 土壤学报, 2013, 50(1): 83-88.
|
18 |
Zhou Hong, Zhang Yuchuan, Zhang Ze, et al. Changing rule of long-term strength of frozen loess cohesion under impact of freeze-thaw cycle[J]. Rock and Soil Mechanics, 2014, 35(8): 2241-2246.
|
|
周泓, 张豫川, 张泽, 等. 冻融作用下冻结黄土黏聚力长期强度变化规律[J]. 岩土力学, 2014, 35(8): 2241-2246.
|
19 |
Liu Jiankun, Yu Qianmi, Liu Jingyu, et al. Influence of non-uniform distribution of fine soil on mechanical properties of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 562-572.
|
|
刘建坤, 于钱米, 刘景宇, 等. 细粒土不均匀分布对粗粒土力学特性的影响[J]. 岩土工程学报, 2017, 39(3): 562-572.
|
20 |
Zhang Ze, Ma Wei, Qi Jilin. Structure evolution and mechanism of engineering properties change of soils under effect of freeze-thaw cycle[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(6): 1904-1914.
|
|
张泽, 马巍, 齐吉琳. 冻融循环作用下土体结构演化规律及其工程性质改变机理[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1904-1914.
|
21 |
Bu Jianqing, Wang Tianliang. Influences of freeze-thaw and fines content on mechanical properties of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 608-614.
|
|
卜建清, 王天亮. 冻融及细粒含量对粗粒土力学性质影响的试验研究[J]. 岩土工程学报, 2015, 37(4): 608-614.
|
22 |
Mazurov G P. Physical and mechanical properties of permafrost[M]. Liang Huisheng, Wu Qijian, trans. Beijing: China Coal Industry Publishing House, 1980: 135-142.
|
|
马祖罗夫 Г П. 冻土物理力学性质[M]. 梁惠生, 伍期建, 译. 北京: 煤炭工业出版社, 1980: 135-142.
|
23 |
Zhang Ze, Ma Wei, Zhang Zhongqiong, et al. Application of spherical template indenter to long-term strength tests for frozen soil[J]. Rock and Soil Mechanics, 2012, 33(11): 3516-3520.
|
|
张泽, 马巍, 张中琼, 等. 球形模板压入仪在冻土长期强度测试中的应用[J]. 岩土力学, 2012, 33(11): 3516-3520.
|
24 |
Yun Qingfei, Xie Chunlei, Zhang Ze, et al. The solution of the double-sphere model and experimental research of the long-term shear strength of frozen sand based on spherical template indenter test[J]. Journal of Glaciology and Geocryology, 2022, 44(2): 485-494.
|
|
恽晴飞, 谢春磊, 张泽, 等. 球模仪测试冻结砂长期抗剪强度的双球模型解答及其试验研究[J]. 冰川冻土, 2022, 44(2): 485-494.
|
25 |
Ivanovici M. Fractal dimension of color fractal images with correlated color components[J]. IEEE Transactions on Image Processing, 2020, 28: 8069-8082.
|
26 |
Li Yurong. Fractal dimension estimation for color texture images[J]. Journal of Mathematical Imaging and Vision, 2020, 62(1): 37-53.
|
27 |
Xu Xuezu, Wang Jiacheng, Zhang Lixin. Physics of frozen soil[M]. Beijing: Science Press, 2001: 169.
|
|
徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001: 169.
|
28 |
Chang Dan, Liu Jiankun, Li Xu. Experimental study on yielding and strength properties of silty sand under freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8): 1721-1728.
|
|
常丹, 刘建坤, 李旭. 冻融循环下粉砂土屈服及强度特性的试验研究[J]. 岩石力学与工程学报, 2015, 34(8): 1721-1728.
|
29 |
Chen Yulong, Zhang Yuning. Experimental study of effects of non-plastic fines on liquefaction properties of saturated sand[J]. Rock and Soil Mechanics, 2016, 37(2): 507-516.
|
|
陈宇龙, 张宇宁. 非塑性细粒对饱和砂土液化特性影响的试验研究[J]. 岩土力学, 2016, 37(2): 507-516.
|
30 |
Guo Zhijie. Effect of fine soil content on physical and mechanical properties of mixed coarse- and fine-grained soil[D]. Beijing: Beijing Jiaotong University, 2018: 25-27.
|
|
郭志杰. 细粒含量对粗-细粒混合土物理力学特性的影响[D]. 北京: 北京交通大学, 2018: 25-27.
|
31 |
Wu Qi, Chen Guoxing, Zhou Zhenglong, et al. Experimental investigation on liquefaction resistance of fine-coarse-grained soil mixtures based on theory of intergrain contact state[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 475-485.
|
|
吴琪, 陈国兴, 周正龙, 等. 基于颗粒接触状态理论的粗细粒混合料液化强度试验研究[J]. 岩土工程学报, 2018, 40(3): 475-485.
|
32 |
Bi Sheng, Chen Guoxing, Zhou Zhenglong, et al. Experimental study on influences of fines content and consolidation stress on shear modulus and damping ratio of saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(): 48-52.
|
|
毕昇, 陈国兴, 周正龙, 等. 细粒含量及固结应力对饱和砂土动剪切模量和阻尼比影响试验研究[J]. 岩土工程学报, 2017, 39(): 48-52.
|