冰川冻土 ›› 2022, Vol. 44 ›› Issue (6): 1842-1852.doi: 10.7522/j.issn.1000-0240.2022.0160
• 寒区工程与灾害 • 上一篇
收稿日期:
2022-05-11
修回日期:
2022-09-01
出版日期:
2022-12-25
发布日期:
2023-01-18
通讯作者:
唐冲
E-mail:j.yuan@foxmail.com;ceetc@dlut.edu.cn
作者简介:
袁俊,高级工程师,主要从事输电线路杆塔与地基基础研究. E-mail: j.yuan@foxmail.com
基金资助:
Jun YUAN1(), Jie ZHAO2,3, Chong TANG4(
), Renjun GAN5
Received:
2022-05-11
Revised:
2022-09-01
Online:
2022-12-25
Published:
2023-01-18
Contact:
Chong TANG
E-mail:j.yuan@foxmail.com;ceetc@dlut.edu.cn
摘要:
输电线路工程现已成为我国冻土工程的重要组成部分,而桩基础是冻土区输电线路杆塔较为通用的基础型式。输电铁塔是典型的高耸结构,抗拔与抗倾覆稳定性是铁塔基础设计的主要控制条件。通过回顾国内外相关文献,发现冻土区桩基础抗拔承载性能研究相对较少,尤其是上拔与水平荷载共同作用时,对其承载机理、荷载传递规律等认知模糊不清,给冻土区桩基础设计带来不便。为此,采用数值计算方法,分析了季节冻土区与多年冻土区粉质黏土、砾砂地基中桩基础抗拔承载性能。结果表明:冻土区桩基础破坏以上拔为主;上拔荷载-位移曲线呈缓变型;同种地基土质条件下,相较融化期,冻结期桩基础抗拔承载力提高20%;相较粉质黏土,砾砂地基承载力提高20%;随着水平荷载增加,桩顶竖向位移增大,导致桩基抗拔承载力下降。
中图分类号:
袁俊, 赵杰, 唐冲, 甘仁钧. 冻土区输电线路桩基础抗拔承载特性数值模拟研究[J]. 冰川冻土, 2022, 44(6): 1842-1852.
Jun YUAN, Jie ZHAO, Chong TANG, Renjun GAN. Numerical analyses of uplift behavior of pile foundation for transmission line structure in frozen soil regions[J]. Journal of Glaciology and Geocryology, 2022, 44(6): 1842-1852.
1 | Qin Dahe. Glossary of cryospheric science[M]. Rev. ed. Beijing: China Meteorological Press, 2016. |
秦大河. 冰冻圈科学辞典[M]. 修订版. 北京: 气象出版社, 2016. | |
2 | Hawlader B, Morgan V, Clark J I. Modelling of pipeline under differential frost heave considering post-peak reduction of uplift resistance in frozen soil[J]. Canadian Geotechnical Journal, 2006, 43(3): 282-293. |
3 | Ma Wei, Qi Jilin, Wu Qingbai. Analysis of the deformations of embankments on the Qinghai-Tibet Railway[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(11): 1645-1654. |
4 | Fortier R, LeBlanc A M, Yu Wenbing. Impacts on permafrost degradation on a road embankment at Umiujaq in Nunavik (Quebec), Canada[J]. Canadian Geotechnical Journal, 2011, 48(5): 720-740. |
5 | Regehr J D, Milligan C A, Montufar J, et al. Review of effectiveness and costs of strategies to improve roadbed stability in permafrost regions[J]. Journal of Cold Regions Engineering, 2013, 27(3): 109-131. |
6 | Batenipour H, Alfaro M C, Kurz D, et al. Deformations and ground temperatures at a road embankment in northern Canada[J]. Canadian Geotechnical Journal, 2014, 51(3): 260-271. |
7 | De Guzman E M, Alfaro M C, Doré G, et al. Performance of highway embankments in the Arctic constructed under winter conditions[J]. Canadian Geotechnical Journal, 2019, 58(5): 722-736. |
8 | De Guzman E M, Alfaro M C, Arenson L U, et al. Thermal regime of highway embankments in the Arctic: field observations and numerical simulations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(6): 04021038. |
9 | Feng Qiang, Yang Zedong, Liu Weiwei, et al. Experimental study of the anisotropic frost heave characteristics of rock surrounding tunnels in cold regions[J]. Journal of Cold Regions Engineering, 2021, 35(4): 04021014. |
10 | Zhou Yalong, Wang Xu, Niu Fujun, et al. Frost jacking characteristics of transmission tower pile foundations with and without thermosyphons in permafrost regions of Qinghai-Tibet Plateau[J]. Journal of Cold Regions Engineering, 2021, 35(2): 04021004. |
11 | Kong Lingzhen, Liu Hui, Zhou Xiayi, et al. Developing and utilizing a universal model for the study of slope stability under freeze-thaw action in the presence of an oil pipeline crossing[J]. Journal of Pipeline Systems Engineering and Practice, 2022, 13(4): 04022037. |
12 | Sardana S, Sinha R K, Verma A K, et al. Influence of freeze-thaw on the stability of road cut slopes: a case study in Indian Himalayan region[J/OL]. Canadian Geotechnical Journal, 2021 [2022-11-20]. . |
13 | Johnston G H, Ladanyi B. Field tests of grouted rod anchors in permafrost[J]. Canadian Geotechnical Journal, 1972, 9(2): 176-194. |
14 | Johnston G H, Ladanyi B. Field tests of deep power-installed screw anchors in permafrost[J]. Canadian Geotechnical Journal, 1974, 11(3): 348-358. |
15 | Chinese Academy of Railway Sciencies. Northwest Institute. Experimental study of the capacity of pile foundation in permafrost region[J]. Building Structure, 1977(4): 13-21. |
铁道部科学研究院西北研究所. 多年冻土中桩基承载力试验研究[J]. 建筑结构, 1977(4): 13-21. | |
16 | Li Guoliang, Zhao Xisheng, Wang Huaqing, et al. Investigation of pile foundation in permafrost region[J]. Journal of the China Railway Society, 1980, 2(1): 83-94. |
励国良, 赵西生, 王化卿, 等. 多年冻土地区桩基试验研究[J]. 铁道学报, 1980, 2(1): 83-94. | |
17 | Biggar K W, Sego D C. Field pile load tests in saline permafrost. I. test procedures and results[J]. Canadian Geotechnical Journal, 1993, 30(1): 34-45. |
18 | Wang Xu, Jiang Daijun, Zhao Xinyu, et al. Experimental study on bearing features of bored pile under non-refreezing condition in permafrost region[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 81-84. |
王旭, 蒋代军, 赵新宇, 等. 多年冻土区未回冻钻孔灌注桩承载性质试验研究[J]. 岩土工程学报, 2005, 27(1): 81-84. | |
19 | Sun Xuexian, Zhang Hui, Tian Ming. Experimental study on vertical pullout capacity of cast-in-site pile in permafrost region[J]. Rock and Soil Mechanics, 2007, 28(10): 2110-2114. |
孙学先, 张慧, 田明. 多年冻土区灌注桩竖向抗拔承载力试验研究[J]. 岩土力学, 2007, 28(10): 2110-2114. | |
20 | Zhang Junwei, Ma Wei, Wang Dayan, et al. In-situ experimental study of the bearing characteristics of cast-in-place bored pile in permafrost regions of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2008, 30(3): 482-487. |
张军伟, 马巍, 王大雁, 等. 青藏高原多年冻土区钻孔灌注桩承载特性试验研究[J]. 冰川冻土, 2008, 30(3): 482-487. | |
21 | Wang Xu, Jiang Daijun, Liu Deren, et al. Experimental study of bearing characteristics of large-diameter cast-in-place bored pile under non-refreezing condition in low-temperature permafrost ground[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1807-1812. |
王旭, 蒋代军, 刘德仁, 等. 低温多年冻土地基大直径钻孔灌注桩未回冻状态承载性质试验研究[J]. 岩石力学与工程学报, 2013, 32(9): 1807-1812. | |
22 | Yu Dezhong, Cheng Peifeng, Ji Cheng, et al. Experimental study of bearing capacity of island permafrost pile foundation before and after refreezing in low altitude and high latitude area[J]. Rock and Soil Mechanics, 2015, 36(): 478-484. |
宇德忠, 程培峰, 季成, 等. 高纬度低海拔岛状多年冻土桩基回冻前后承载力的试验研究[J]. 岩土力学, 2015, 36(): 478-484. | |
23 | Aldaeef A A, Rayhani M T. Pull-out capacity and creep behavior of helical piles in frozen ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12): 04020140. |
24 | Weaver J S, Morgenstern N R. Considerations on the use of cast-in-place piles in permafrost[J]. Canadian Geotechnical Journal, 1980, 17(2): 320-325. |
25 | Qiu Mingguo, Li Haishan, Wang Ke, et al. Experimental study on failure pattern of piles in frozen soil[J]. Journal of Harbin University of Civil Engineering and Architecture, 1999, 32(5): 39-42. |
邱明国, 李海山, 王珂, 等. 冻土中桩破坏模式的试验研究[J]. 哈尔滨建筑大学学报, 1999, 32(5): 39-42. | |
26 | Zhang Jianming, Zhu Yuanlin, Zhang Jiayi. Experimental study on the settlement of model pile in frozen soil under dynamic loading[J]. Science in China: Series D Earth Sciences, 1999, 42(): 30-37. |
张建明, 朱元林, 张家懿. 动荷载下冻土中模型桩的沉降试验研究[J]. 中国科学: D辑 地球科学, 1999, 29(): 27-33. | |
27 | Fu Houli. Experimental research of the additional melting force on single pile in saturated soil[J]. Rock and Soil Mechanics, 2004, 25(9): 1447-1450. |
付厚利. 饱和土中单桩融沉附加力的试验研究[J]. 岩土力学, 2004, 25(9): 1447-1450. | |
28 | Wang Haixin, Wu Yaping, Sun Anyuan, et al. Mechanical properties research about frozen soil pile foundation under cyclic loading[J]. Journal of Railway Science and Engineering, 2017, 14(10): 2111-2117. |
王海新, 吴亚平, 孙安元, 等. 循环荷载下冻土桩基力学特性研究[J]. 铁道科学与工程学报, 2017, 14(10): 2111-2117. | |
29 | Zhang Lei, Wu Yaping, Wang Ning, et al. Analysis of the influence of groundwater seepage on the mechanical properties of model piles in frozen soil region[J]. Journal of Glaciology and Geocryology, 2019, 41(2): 350-356. |
张磊, 吴亚平, 王宁, 等. 地下水渗流对冻土区模型桩力学特性的影响分析[J]. 冰川冻土, 2019, 41(2): 350-356. | |
30 | Liu Qinghe, Wang Yongtao, Xu Xiangtian, et al. Experimental study on shear characteristics of the interface between the frozen silty clay and the pipe foundation[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 491-498. |
刘庆贺, 王永涛, 徐湘田, 等. 冻结粉质黏土-桩基接触面剪切特性试验研究[J]. 冰川冻土, 2020, 42(2): 491-498. | |
31 | Zhang Zhaoyang, Wu Yaping, Du Zhaojin, et al. Study on transfer function and influence coefficient of pile foundation in frozen soil considering dynamic loading[J]. Railway Standard Design, 2020, 64(11): 44-50. |
张召阳, 吴亚平, 杜兆金, 等. 考虑动载作用冻土桩基传递函数及其影响系数研究[J]. 铁道标准设计, 2020, 64(11): 44-50. | |
32 | Li Renjie, He Fei, Wang Xu, et al. Experimental research on bearing behavior of piles by using different pile formation technologies in the frozen silt[J]. Journal of Glaciology and Geocryology, 2021, 43(6): 1809-1817. |
李仁杰, 何菲, 王旭, 等. 不同成桩工艺条件下冻结粉土中基桩承载性状试验研究[J]. 冰川冻土, 2021, 43(6): 1809-1817. | |
33 | Ladanyi B, Johnston G H. Behavior of circular footings and plate anchors embedded in permafrost[J]. Canadian Geotechnical Journal, 1974, 11(4): 531-553. |
34 | Ladanyi B. Bearing capacity of strip footings in frozen soils[J]. Canadian Geotechnical Journal, 1975, 12(3): 393-407. |
35 | Rowley R K, Watson G H, Ladanyi B. Prediction of pile performance in permafrost under lateral load[J]. Canadian Geotechnical Journal, 1975, 12(4): 510-523. |
36 | Sheng Hongfei. The friction drag analysis in checking the ability of resisting frost heaving upswell of foundation pile[J]. Journal of Harbin University of Civil Engineering & Architecture, 1984(3): 117-124. |
盛洪飞. 基桩抗冻拔验算中有关摩阻力的分析计算[J]. 哈尔滨建筑工程学院学报, 1984(3): 117-124. | |
37 | Sui Xianzhi. Calculating the counter-forces of heaving in the foundation of piles in seasonally frozen regions[J]. Journal of Glaciology and Geocryology, 1985, 7(3): 213-220. |
隋咸志. 季节冻土区扩大式基础上冻胀反力的计算[J]. 冰川冻土, 1985, 7(3): 213-220. | |
38 | Zhou Youcai. Calculation of frost heave force based on heave deformation in the scope restrained by foundation[J]. Journal of Glaciology and Geocryology, 1985, 7(4): 335-346. |
周有才. 按基础约束范围内冻胀变形计算冻胀力[J]. 冰川冻土, 1985, 7(4): 335-346. | |
39 | Sheng Hongfei. Approach to some problems of the check of anti-frost heaving of bridge pile foundation in seasonally frozen regions[J]. Journal of Glaciology and Geocryology, 1989, 11(1): 44-52. |
盛洪飞. 季冻区桥梁基桩抗冻拔验算几个问题的探讨[J]. 冰川冻土, 1989, 11(1): 44-52. | |
40 | Liu Hongxu. The discussion of several problems of the frost heaving force in process of adfreezing of the soil[J]. Journal of Glaciology and Geocryology, 1990, 12(3): 269-280. |
刘鸿绪. 对土冻结过程中若干冻胀力学问题的商榷[J]. 冰川冻土, 1990, 12(3): 269-280. | |
41 | Liu Hongxu. Discussion on the distribution of tangential frost heaving forces along the lateral surface of pile[J]. Journal of Glaciology and Geocryology, 1993, 15(2): 289-292. |
刘鸿绪. 对切向冻胀力沿桩侧表面分布的探讨[J]. 冰川冻土, 1993, 15(2): 289-292. | |
42 | Qiu Mingguo, Xu Xueyan, Li Haishan, et al. Study on expanding effects of cone pile in the elastic stage in frozen silty clay[J]. Journal of Glaciology and Geocryology, 2002, 24(5): 668-671. |
邱明国, 徐学燕, 李海山, 等. 冻结粉质粘土中锥形桩弹性阶段挤扩效应的研究[J]. 冰川冻土, 2002, 24(5): 668-671. | |
43 | Wu Shaohai. Problems in the cast-in-place pile foundation in permafrost regions of the Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2003, 25(): 88-91. |
吴少海. 青藏铁路多年冻土区钻孔灌注桩设计几个问题的探讨[J]. 冰川冻土, 2003, 25(): 88-91. | |
44 | Foriero A, Ladanyi B. Generalized finite-element algorithm for laterally loaded piles in permafrost in comparison with measurements[J]. Canadian Geotechnical Journal, 1991, 28(4): 523-541. |
45 | Jia Yanmin, Guo Hongyu, Guo Qichen. Finite element analysis of bored pile-frozen soil interactions in permafrost[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(): 3134-3140. |
贾艳敏, 郭红雨, 郭启臣. 多年冻土区灌注桩桩-冻土相互作用有限元分析[J]. 岩石力学与工程学报, 2007, 26(): 3134-3140. | |
46 | Li Dongwei, Wang Renhe, Hu Pu, et al. A FEM analysis of cone-shaped pile coupling large deformation of frozen soil[J]. Journal of Glaciology and Geocryology, 2007, 29(4): 640-644. |
李栋伟, 汪仁和, 胡璞, 等. 冻土中锥形桩-土大变形有限元数值分析[J]. 冰川冻土, 2007, 29(4): 640-644. | |
47 | Wang Tengfei, Liu Jiankun, Liu Xiaoqiang, et al. Numerical simulation on anti-jacking-up performance of helical piles of photovoltaic stents in seasonal frozen region[J]. Journal of Glaciology and Geocryology, 2016, 38(4): 1167-1174. |
王腾飞, 刘建坤, 刘晓强, 等. 季节冻土区光伏支架螺旋桩基的冻胀数值分析研究[J]. 冰川冻土, 2016, 38(4): 1167-1174. | |
48 | Yin Pingbao, Yang Kaibo, Yang Zhaohui, et al. Horizontal bearing characteristics of pile foundation considering the influence of temperature and freeze-thaw cycles[J]. Advanced Engineering Sciences, 2021, 53(3): 115-124. |
尹平保, 杨铠波, 杨朝晖, 等. 考虑温度和冻融循环的基桩水平承载特性研究[J]. 工程科学与技术, 2021, 53(3): 115-124. | |
49 | Huang Xubin, Sheng Yu, Huang Long, et al. Study of mechanical behaviors of pile foundation with enlarged end in seasonally frozen ground regions: progress and review[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1220-1228. |
黄旭斌, 盛煜, 黄龙, 等. 季节冻土区扩底单桩受力性能研究进展与展望[J]. 冰川冻土, 2020, 42(4): 1220-1228. | |
50 | Zhang Xiyan, Sheng Yu, Huang Long, et al. Study of the tangential frost heaving force: Status and prospects[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 865-877. |
张玺彦, 盛煜, 黄龙, 等. 切向冻胀力的研究现状及展望[J]. 冰川冻土, 2020, 42(3): 865-877. | |
51 | Lu Xianlong, Cheng Yongfeng. Current status and prospect of transmission tower foundation engineering in China[J]. Electric Power Construction, 2005, 26(11): 25-27. |
鲁先龙, 程永锋. 我国输电线路基础工程现状与展望[J]. 电力建设, 2005, 26(11): 25-27. | |
52 | Zhang Shuliang, Gao Feng, Ning Baoying, et al. Analysis on the construction practices of transmission projects in permafrost regions in Canada and the United States[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 201-207. |
张树良, 高峰, 宁宝英, 等. 加拿大、美国多年冻土地区输电工程建设经验浅析[J]. 冰川冻土, 2013, 35(1): 201-207. | |
53 | Cheng Yongfeng, Lu Xianlong, Liu Huaqing, et al. Model test study on pile foundation of 110 kV transmission line of Qinghai-Tibet Railway in frozen soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(): 4378-4382. |
程永锋, 鲁先龙, 刘华清, 等. 青藏铁路110 kV输电线路冻土桩基模型试验研究[J]. 岩石力学与工程学报, 2004(): 4378-4382. | |
54 | Wang Renhe, Wang Wei, Cheng Yongfeng. Model experimental study on compressive bearing capacity of single pile in frozen soil[J]. Journal of Glaciology and Geocryology, 2005, 27(2): 188-193. |
汪仁和, 王伟, 程永锋. 冻土中单桩抗压承载力模型试验研究[J]. 冰川冻土, 2005, 27(2): 188-193. | |
55 | Wang Renhe, Wang Wei, Cheng Yongfeng. Model study of tensile bearing capacity of a single pile under frozen condition[J]. Journal of Glaciology and Geocryology, 2006, 28(5): 766-771. |
汪仁和, 王伟, 程永锋. 冻土中单桩抗拔承载力的模型试验研究[J]. 冰川冻土, 2006, 28(5): 766-771. | |
56 | Lu Xianlong. Mode tests on concrete pile in frozen soil under uplift loading[J]. Mine Construction Technology, 2012, 33(6): 17-21. |
鲁先龙. 上拔荷载作用下冻土地基混凝土单桩模型试验[J]. 建井技术, 2012, 33(6): 17-21. | |
57 | Li Mingxuan. Research on uplift behavior of Golmud-Lhasa transmission line tower foundation in permafrost[D]. Harbin: Harbin Institute of Technology, 2014. |
李明轩. 格尔木至拉萨多年冻土区输电线路杆塔基础上拔性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. | |
58 | Zhang Zhangming. Study on uplift bearing capacity of overhead transmission line foundation in permafrost regions[D]. Xi’an: Xi’an University of Architecture and Technology, 2017. |
张章明. 多年冻土区架空输电线路基础抗拔承载性能研究[D]. 西安: 西安建筑科技大学, 2017. | |
59 | Wu Tong, Xu Jian, Qian Wenjun, et al. Experimental research on uplift mechanism of pipe pile foundation in permafrost area[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(1): 145-153. |
吴彤, 许健, 钱文君, 等. 多年冻土区管桩基础抗拔承载性能试验研究[J]. 地下空间与工程学报, 2018, 14(1): 145-153. | |
60 | Technical code for foundation design of overhead transmission line in frozen soil region: [S]. Beijing: China Planning Press, 2015. |
冻土地区架空输电线路基础设计技术规程: [S]. 北京: 中国计划出版社, 2015. | |
61 | Technical code for geotechnical investigation of overhead transmission line in frozen soil region: [S]. Beijing: China Planning Press, 2020. |
冻土地区架空输电线路岩土工程勘测技术规程: [S]. 北京: 中国计划出版社, 2020. | |
62 | The annual report of the Chinese Society of Electrical Engineering 2021 : evaluation of key technologies for the ten year’s operation of Qinghai-Tibet Power Grid Interconnection Project[M]. Beijing: China Electric Power Press, 2022. |
2021年中国电机工程学会专题技术报告: 青藏电力联网工程投运十年关键技术评价[M]. 北京: 中国电力出版社, 2022. | |
63 | Distribution and physical properties of frozen soils in the Qinghai-Tibet DC inter-connection project: report on the testing of physical properties of frozen soils[R]. Xi’an: Northwest Electric Power Design Institute Co., Ltd., 2008. |
青藏直流联网工程冻土分布及物理力学特性研究: 冻土物理力学特性试验专题报告[R]. 西安: 西北电力设计院, 2008. | |
64 | Technical code for building pile foundations: [S]. Beijing: China Architecture & Building Press, 2008. |
建筑桩基技术规范: [S]. 北京: 中国建筑工业出版社, 2008. |
[1] | 徐岳震, 申明德, 周志伟, 马巍, 李国玉. 青藏铁路高温多年冻土区典型路基的长期热稳定性研究[J]. 冰川冻土, 2022, 44(6): 1784-1795. |
[2] | 王海航, 周扬, 赵晓东, 王建州, 周国庆. 冻土抗拉强度研究现状与展望[J]. 冰川冻土, 2022, 44(6): 1807-1819. |
[3] | 姚明星, 赵锐, 杨林川, 齐华, 廖昕, 孟祥连, 周福军. 基于GWRRK的多年冻土地温空间分布模拟研究[J]. 冰川冻土, 2022, 44(5): 1570-1580. |
[4] | 陆妍, 喻文兵, 张天祺, 刘伟博, 邱凯驰. 多年冻土区土壤多环芳烃污染研究进展[J]. 冰川冻土, 2022, 44(5): 1640-1652. |
[5] | 雷乐乐, 王大雁, 王永涛, 张斌龙. 冻结黏土空心圆柱试样制样方法[J]. 冰川冻土, 2022, 44(5): 1674-1680. |
[6] | 王彬, 荣传新, 程桦, 蔡海兵. 定向渗流诱导的非均质冻结壁力学特性分析[J]. 冰川冻土, 2022, 44(3): 1011-1020. |
[7] | 庞小冲, 朱小明, 穆彦虎, 张坤, 张力杰, 郑波, 李凌洁. 寒区隧道保温设防长度工程实践与研究进展综述[J]. 冰川冻土, 2022, 44(3): 998-1010. |
[8] | 杜玉霞, 明锋, 赵淑萍, 张淑娟, 杨旭. 温度对土壤介电常数的影响规律研究[J]. 冰川冻土, 2022, 44(2): 634-642. |
[9] | 游艳辉, 李党民, 单波, 田生祥, 王新斌, 俞祁浩. 高密度电法在输电线路塔基基础附近多年冻土探测中的应用[J]. 冰川冻土, 2022, 44(2): 684-692. |
[10] | 焦亚青, 宋立全, 臧淑英, 孙超峰, 鲁博权. 大兴安岭多年冻土泥炭地无机氮动态对秋季冻融的响应[J]. 冰川冻土, 2022, 44(2): 387-401. |
[11] | 孙超峰, 宋立全, 臧淑英, 焦亚青, 鲁博权. 大兴安岭秋季冻结期土壤水热变化对多年冻土泥炭地可溶性有机碳的影响[J]. 冰川冻土, 2022, 44(2): 402-414. |
[12] | 卫丁, 赵廷虎, 穆彦虎, 刘富荣, 丁泽琨, 刘自成. 气候变暖背景下沱沱河盆地多年冻土与融区地温过程研究[J]. 冰川冻土, 2022, 44(2): 427-436. |
[13] | 申明德, 周志伟, 马巍. 冻土长期强度的衰减特征及屈服准则[J]. 冰川冻土, 2022, 44(2): 437-447. |
[14] | 刘志云, 钟振涛, 崔福庆, 陈建兵, 彭惠. 青藏工程走廊冻融土热扩散系数特性与预测模型研究[J]. 冰川冻土, 2022, 44(2): 458-469. |
[15] | 周保, 魏刚, 张永艳, 魏赛拉加, 蒋观利. 不同地表条件下青藏公路对多年冻土的热影响差异研究[J]. 冰川冻土, 2022, 44(2): 470-484. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000