1 |
Jiang Tingda. Lignin[M]. 2nd ed. Beijing: Chemical Industry Press, 2018: 1-3.
|
|
蒋挺大. 木质素[M]. 2版. 北京: 化学工业出版社, 2008: 1-3.
|
2 |
Zhang Wuyu. Loess engineering[M]. Beijing: China Building Materials Press, 2018:1-6.
|
|
张吾渝. 黄土工程[M]. 北京: 中国建材工业出版社, 2018: 1-6.
|
3 |
Hu Zaiqiang, Liang Zhichao, Wu Chuanyi, et al. Experimental study on mechanical properties of lime modified loess under freeze-thaw cycle[J]. China Civil Engineering Journal, 2019, 52(): 211-217.
|
|
胡再强, 梁志超, 吴传意, 等. 冻融循环作用下石灰改性黄土的力学特性试验研究[J]. 土木工程学报, 2019, 52(): 211-217.
|
4 |
Cui Honghuan, Pei Guolu, Yao Shijun, et al. Experimental study of mechanical properties of cement soil of different curing time subjected to freezing-thawing cycles[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 110-115.
|
|
崔宏环, 裴国陆, 姚世军, 等. 不同养生龄期下水泥土经冻融循环后力学性能试验探究[J]. 冰川冻土, 2018, 40(1): 110-115.
|
5 |
Wang Tianliang, Liu Jiankun, Tian Yahu, et al. Static properties of cement- and lime-modified soil subjected to freeze-thaw cycles[J]. Rock and Soil Mechanics, 2011, 32(1): 193-198.
|
|
王天亮, 刘建坤, 田亚护. 冻融作用下水泥及石灰改良土静力特性研究[J]. 岩土力学, 2011, 32(1): 193-198.
|
6 |
Zhang Wuyu, Guo Anbang, LinChen. Effects of Cyclic Freeze and Thaw on Engineering Properties of Compacted Loess and Lime-Stabilized Loess [J]. Journal of Materials in Civil Engineering, 2019, 31(9): 04019205.1-04019205.12.
|
7 |
Santoni R, Tingle J, Webster S. Stabilization of silty sand with nontraditional additives[J]. Transportation Research Record Journal of the Transportation Research Board, 2002, 1787: 61-70.
|
8 |
Tingle J, Santoni R. Stabilization of clay soils with nontraditional additives[J]. Transportation Research Record Journal of the Transportation Research Board, 2003, 1819: 72-84.
|
9 |
Indraratna B, Muttuvel T, Khabbaz H. Modelling the erosion rate of chemically stabilized soil incorporating tensile force-deformation characteristics[J]. Canadian Geotechnical Journal, 2009, 46(1): 57-68.
|
10 |
Ceylan H, Gopalakrishnan K, Kim S. Soil stabilization with bioenergy coproduct[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2186(1): 130-137.
|
11 |
Hou Xin, Ma Wei, Li Guoyu, et al. Influence of lignosulfonate on mechanical properties of Lanzhou loess[J]. Rock and Soil Mechanics, 2017, 38(): 18-26.
|
|
侯鑫, 马巍, 李国玉, 等. 木质素磺酸盐对兰州黄土力学性质的影响[J]. 岩土力学, 2017, 38(): 18-26.
|
12 |
He Zhiqiang, Fan henghui, Wang Junqiang, et al. Experimental study of engineering properties of loess reinforced by lignosulfonate[J]. Rock and Soil Mechanics, 2017, 38(3): 731-739.
|
|
贺智强, 樊恒辉, 王军强, 等. 木质素加固黄土的工程性能试验研究[J]. 岩土力学, 2017, 38(3): 731-739.
|
13 |
Liu Songyu, Zhang tao, Cai Guojun. Research on teachnology and engineering application of silt subgrade solidified by lignin-based industrial by-product[J]. China Journal of Highway and Transport, 2018, 31(3): 1-11.
|
|
刘松玉, 张涛, 蔡国军. 工业废弃木质素固化改良粉土路基技术与应用研究[J]. 中国公路学报, 2018, 31(3): 1-11.
|
14 |
Zhang Jianwei, Kang Feixiang, Bian Hanliang, et al. Experiments on unconfined compressive strength of lignin modified silt in Yellow River flood area under freezing-thawing cycles[J]. Rock and Soil Mechanics, 2020, 41(): 1-6.
|
|
张建伟, 亢飞翔, 边汉亮, 等. 冻融循环下木质素改良黄泛区粉土无侧限抗压强度试验研究[J]. 岩土力学, 2020, 41(): 1-6.
|
15 |
Liu Zhaozhao, Wang Qian, Zhong Xiumei, et al. Water holding capacity and water stability of lignin-modified loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2582-2892.
|
|
刘钊钊, 王谦, 钟秀梅, 等. 木质素改良黄土的持水性和水稳性[J]. 岩石力学与工程学报, 2020, 39(12): 2582-2592.
|
16 |
Ji Shengge, Wang Baozhong, Yang Xiujuan, et al. Experimental study of dispersive clay modified by calcium lignosulfonate[J]. Rock and Soil Mechanics, 2021, 42(9): 2405-2415.
|
|
姬胜戈, 王宝仲, 杨秀娟,等. 木质素磺酸钙改性分散性土的试验研究[J]. 岩土力学, 2021, 42(9): 2405-2415.
|
17 |
Zhang Tao, Cai Guojun, Liu Songyu, et al. Research on stabilization microcosmic mechanism of lignin based industrial by-product treated subgrade silt[J]. Rock and Soil Mechanics, 2016, 37(6): 1665-1672.
|
|
张涛, 蔡国军, 刘松玉, 等. 工业副产品木质素改良路基粉土的微观机制研究[J]. 岩土力学, 2016, 37(6): 1665-1672.
|
18 |
Liu Zhaozhao. Mechanical properties and reinforcement mechanism of lignin-modified loess[D]. Lanzhou: Lanzhou University, 2020: 16.
|
|
刘钊钊. 木质素改良黄土力学特性及加固机理研究[D]. 兰州: 兰州大学, 2020: 16.
|
19 |
Liu J, Chang D, Yu Q. Influence of freeze-thaw cycles on mechanical properties of a silty sand[J]. Engineering Geology, 2016, 210: 23-32.
|
20 |
Wang Tianliang. Study on dynamic and static properties of cement and lime modified fillings subjected to freezing and thawing[D]. Beijing: Beijing Jiaotong University, 2011: 55.
|
|
王天亮. 冻融条件下水泥及右灰路基改良土的动静力特性研究[D]. 北京: 北京交通大学, 2011: 55.
|
21 |
Hu Tianfei, Liu Jiankun, Fang jianhong, et al. Experimental study on the effect of cyclic freezing-thawing on mechanical properties of silty clay with different degrees of compaction[J]. Journal of Rock Mechanics and Engineering, 2017, 36(6): 1495-1503.
|
|
胡田飞, 刘建坤, 房建宏, 等. 冻融循环下压实度对粉质黏土力学性质影响的试验研究[J]. 岩石力学与工程学报, 2017, 36(6): 1495-1503.
|
22 |
Hu Tianfei, Liu Jiankun, Fang jianhong, et al. Experimental study on the effect of moisture content on mechanical propertues of silty clay subjected to freeze-thaw cycling [J]. Journal of Harbin Institute of Technology, 2017, 49(12): 123-130.
|
|
胡田飞, 刘建坤, 房建宏, 等. 冻融循环下含水率对粉质黏土力学性质影响试验[J]. 哈尔滨工业大学学报, 2017, 49(12): 123-130.
|
23 |
Liu Jiankun, Xiao Junhua. Experimental study on the stability of railroad silt subgrade with increasing train speed[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(6): 833-841.
|
24 |
Zhao Futang, Chang Lijun, Zhang Wuyu. Analysis on the influence of cyclic stress ratio and vibration frequency on microstructure of saline soil[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 854-864.
|
|
赵福堂, 常立君, 张吾渝. 循环应力比和振动频率对盐渍土微观结构影响分析[J] 冰川冻土, 2020, 42(3): 854-864.
|
25 |
Lee W, Bohra N C, Altschaeffl A G.et al. Resilient modulus of cohesive soils and the effect of freeze-thaw[J]. Canadian Geotechnical Journal, 1995, 32(4): 559-568.
|
26 |
Xie Banglong, Zhang Wuyu, Sun Xianglong, et al. Study on the influence of lime-improved loess strength based on different temperature control curves[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 262-274.
|
|
解邦龙, 张吾渝, 孙翔龙, 等. 不同温控曲线对石灰改良黄土强度影响研究[J]. 冰川冻土, 2022, 44(1): 262-274.
|
27 |
Alazigha D, Indraratna B, Vinod J, et al. Mechanisms of stabilization of expansive soil with lignosulfonate admixture[J]. Transportation Geotechnics, 2018, (14): 81-92.
|
28 |
Liu Yaowu. Effective assessment and stabilization mechanism of sulfur-free lignin-stabilized soda alkaline soil[D]. Changchun: Jilin University, 2020: 138.
|
|
刘尧伍. 无磺木质素加固碳酸型盐渍土工程效果与机理研究[D]. 长春: 吉林大学, 2020: 138.
|