冰川冻土 ›› 2022, Vol. 44 ›› Issue (6): 1944-1957.doi: 10.7522/j.issn.1000-0240.2022.0166
• 冰冻圈技术 • 上一篇
肖杨1,2(), 满浩然1,2, 董星丰1,2, 臧淑英1,2, 李苗1,2(
)
收稿日期:
2021-07-20
修回日期:
2022-01-13
出版日期:
2022-12-25
发布日期:
2023-01-18
通讯作者:
李苗
E-mail:yangmongolia@163.com;mli@hrbnu.edu.cn
作者简介:
肖杨,硕士研究生,主要从事冻土学与寒区生态环境研究. E-mail: yangmongolia@163.com
基金资助:
Yang XIAO1,2(), Haoran MAN1,2, Xingfeng DONG1,2, Shuying ZANG1,2, Miao LI1,2(
)
Received:
2021-07-20
Revised:
2022-01-13
Online:
2022-12-25
Published:
2023-01-18
Contact:
Miao LI
E-mail:yangmongolia@163.com;mli@hrbnu.edu.cn
摘要:
地表土壤冻融循环过程对地表水分和能量平衡有重要影响,进而影响植被生长、土壤含水量、碳循环和陆地生态系统。被动微波具有时间分辨率高、数据量丰富、对土壤水分敏感等特点,在监测地表冻融过程中发挥了重要的作用。随着国内外被动微波传感器相继升空,为冻土的年际变化、季节变化、日变化及长时序的近地表土壤冻融循环的研究提供了保障,近年来利用被动微波数据进行地表冻融循环的研究逐渐增多。基于以往研究,本文总结了被动微波遥感数据的类型和所含波段的特点;阐述了被动微波数据用于冻融监测的原理,重点介绍了被动微波数据在冻融监测研究中的五类算法,包括双指标算法、决策树算法、冻融判别式算法、季节阈值算法和基于L波段相对冻结因子阈值判别算法,并对五类算法进行了对比分析;梳理了基于不同算法和被动微波数据的冻融产品;研究中受传感器物理特性和地球形状及轨道等影响导致被动微波数据缺失的问题,可利用前后两天被动微波数据平均值,或者建立统计函数来补齐缺失数据。针对现有冻融判别算法对积雪覆盖地区的判别精度较低的问题,可采用数据同化的方法,或者从积雪辐射和冻土介电模型出发,对算法进行优化来提高判别精度。此外,SMAP冻融产品时序较短,在未来研究中可联合SMOS卫星扩展冻融产品的时间序列。
中图分类号:
肖杨, 满浩然, 董星丰, 臧淑英, 李苗. 地表冻融状态的被动微波遥感判别研究进展[J]. 冰川冻土, 2022, 44(6): 1944-1957.
Yang XIAO, Haoran MAN, Xingfeng DONG, Shuying ZANG, Miao LI. Research advances in passive microwave remote sensing of surface freeze-thaw state[J]. Journal of Glaciology and Geocryology, 2022, 44(6): 1944-1957.
表1
被动微波传感器的特征参数"
传感器 | 卫星平台 | 运行时间 | 频率/(GHz) | 瞬时视场/(km×km) | 极化方式 | 视角/(°) | 时间分辨率/d | 扫描方式 | 宽度/km | 过境时间(当地时间) |
---|---|---|---|---|---|---|---|---|---|---|
SMMR | Nimbus-7 | 1978年10月—1987年8月 | 6.6 10.7 18.2 21.0 37.0 | 136×89 87×57 54×35 47×30 47×30 | 水平和垂直 | 50.3 | 2 | 圆锥扫描 | 780 | 12:00 24:00 |
SSM/I | F08 F10 F11 F13 F14 F15 | 1987年9月—1991年12月 1990年12月—1997年11月 1991年12月—2000年5月 1995年5月—2009年11月 1997年5月—2008年8月 2000年2月—2021年8月 | 19.3 22.3 37.0 85.5 | 69×44 60×40 37×28 15×13 | 水平和垂直 (22.3 GHz 只有垂直) | 53.1 | 1 | 圆锥扫描 | 1 400 | 06:00 18:00 |
SSMIS | F16 F17 F18 F19 | 2005年11月— 2008年3月— 2010年3月— 2014年11月—2016年2月 | 19.3 22.3 37.0 91.7 | 69×44 60×40 37×28 38×30 | 水平和垂直 (22.3 GHz 只有垂直) | 53.1 | 1 | 圆锥扫描 | 1 400 | 05:31 17:31 |
AMSR-E | Aqua | 2002年6月—2011年10月 | 6.9 10.7 18.7 23.8 36.5 89.0 | 75×43 51×30 27×16 31×18 14×8 6×4 | 水平和垂直 | 55.0 | 1 | 圆锥扫描 | 1 450 | 01:30 13:30 |
AMSR2 | GCOM-W1 | 2012年5月— | 6.9 7.3 l0.7 18.7 23.8 36.5 89.0 | 62×35 62×35 42×24 22×14 26×15 12×7 5×3 | 水平和垂直 | 55.0 | 1 | 圆锥扫描 | 1 450 | 01:30 13:30 |
SMOS | — | 2009年11月— | 1.4 | — | 水平和垂直 | 0~55.0 | 1~3 | 圆锥扫描 | 1 000 | 06:00 18:00 |
SMAP | — | 2015年1月— | 1.4 | — | 水平和垂直 | 35.0~50.0 | 1 | 圆锥扫描 | 1 000 | 06:00 18:00 |
MWRI | FY3A FY3B FY3C FY3D | 2008年12月—2010年5月 2010年11月—2019年8月 2013年7月—2020年2月 2019年1月— | 10.7 18.7 23.8 36.5 89.0 | 51×85 50×30 27×45 18×30 9×15 | 水平和垂直 | 53.0 | 1 | 圆锥扫描 | 1 400 | 01:30 13:30 |
表2
地表冻融状态的算法"
算法 | 判定指标 | 参考文献 |
---|---|---|
双指标算法 | 37 GHz垂直极化亮温及18/19 GHz和37 GHz的负亮温谱梯度; 36.5 GHz垂直极化亮温及各个波段的水平极化亮温标准偏差值SDI。 | [ |
决策树算法 | 37 GHz垂直极化亮温数据、19 GHz极化差和散射指数SI。 | [ |
冻融判别式算法 | 其中:DF和DT分别代表冻土和融土的判别方程函数值。当DF>DT时,地表土壤被判定为冻结状态;当DF<DT时,地表土壤被判定为融化状态。 | [ |
季节阈值算法 | 其中: | [ |
基于L波段相对冻结因子阈值 判别算法 | 其中:t为时间, | [ |
表3
判别地表冻融状态算法对比"
算法 | 优点 | 缺点 | 适用范围 |
---|---|---|---|
双指标算法 | ①方法较为简单; ②便于理解 | ①存在使用条件限制; ②阈值选取较为困难 | 非积雪覆盖陆地区域 |
决策树算法 | ①剔除了沙漠、降水等强散射体的影响 | ①使用判别指标较多; ②阈值选取较为复杂; ③该方法仅适合与青藏高原具有类似气候特征的研究区域 | 所有陆地区域 |
冻融判别式算法 | ①方法简单、易实现; ②普适性强 | ①忽略不同气候类型和地形等条件下土壤冻融时的地表辐射和温度特征; ②该方法方程系数随训练数据发生变化,因此对数据的代表性要求较高 | 所有陆地区域 |
季节阈值算法 | ①利用单频亮温就可以判别土壤冻融状态 | ①阈值选取困难; ②确定冻结、融化状态的参考值耗时长 | 所有陆地区域 |
基于L波段相对冻结因子阈值判别算法 | ①利用单频亮温就可以判别土壤冻融状态; ②较为准确地探测干雪和植被下土壤冻融状况 | ①确定冻结、融化状态的参考值工作量大; ②对表层土壤冻结不敏感土壤 | 所有陆地区域 |
表4
各算法冻融产品的基本信息"
https://nsidc.org/data/SPL3FTP_E | ||||||
1 | Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing: Science Press, 2018. |
周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2018. | |
2 | Qin Dahe. Introduction to cryospheric science[M]. Beijing:Science Press, 2018. |
秦大河. 冰冻圈科学概论[M]. 北京: 科学出版社, 2018. | |
3 | Kou Xiaokang, Jiang Lingmei, Yan Shuang, et al. Detection of land surface freeze-thaw status on the Tibetan Plateau using passive microwave and thermal infrared remote sensing data[J]. Remote Sensing of Environment, 2017, 199: 291-301. |
4 | Zhang Ziqian, Zhao Tianjie, Shi Jiancheng, et al. Near-surface freeze-thaw state mapping over Tibetan Plateau[J]. Journal of Remote Sensing, 2020, 24(7): 904-916. |
张子谦, 赵天杰, 施建成, 等. 青藏高原地区近地表冻融状态判别算法研究[J]. 遥感学报, 2020, 24(7): 904-916. | |
5 | Wang Genxu, Hu Hongchang, Li Taibin. The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed[J]. Journal of Hydrology, 2009, 375(3/4): 438-449. |
6 | Martens J, Wild B, Muschitiello F, et al. Remobilization of dormant carbon from Siberian-Arctic permafrost during three past warming events[J]. Science Advances, 2020, 6(42): eabb6546. |
7 | Cherkauer K A, Lettenmaier D P. Hydrologic effects of frozen soils in the upper Mississippi River Basin[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D16): 19599-19610. |
8 | Chai Linna, Zhang Lixin, Zhang Yuanyuan, et al. Comparison of the classification accuracy of three soil freeze-thaw discrimination algorithms in China using SSMIS and AMSR-E passive microwave imagery[J]. International Journal of Remote Sensing, 2014, 35(22): 7631-7649. |
9 | Peng Xiaoqing, Frauenfeld O W, Cao Bin, et al. Response of changes in seasonal soil freeze-thaw state to climate change from 1950 to 2010 across China[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(11): 1984-2000. |
10 | Wang Chenghai, Dong Wenjie, Wei Zhigang. The development of study on the soil freezing-thaw process in land surface model[J]. Advance in Earth Sciences, 2002, 17(1): 44-52. |
王澄海, 董文杰, 韦志刚. 陆面模式中土壤冻融过程参数化研究进展[J]. 地球科学进展, 2002, 17(1): 44-52. | |
11 | Zhang Tingjun, Jin Rui, Gao Feng, et al. Overview of the satellite remote sensing of frozen ground: Visible-thermal infrared and radar sensor[J]. Advances in Earth Science, 2009, 24(9): 963-972. |
张廷军, 晋锐, 高峰, 等. 冻土遥感研究进展:可见光、红外及主动微波卫星遥感方法[J]. 地球科学进展, 2009, 24(9): 963-972. | |
12 | Morrissey L, Strong L, Card D H. Mapping permafrost in the boreal forest with Thematic Mapper satellite data[J]. Photogrammetric Engineering and Remote Sensing, 1986, 52: 1513-1520. |
13 | Xie Yanmei, Jin Rui, Yang Xingguo. Algorithm development of monitoring daily near surface freeze-thaw cycles using AMSR-E brightness temperatures[J]. Remote Sensing Technology and Application, 2013, 28(2): 182-191. |
谢燕梅, 晋锐, 杨兴国. AMSR-E亮温监测中国近地表冻融循环算法研究[J]. 遥感技术与应用, 2013, 28(2): 182-191. | |
14 | Zhou Xin, Ye Tianyi, Shen Fangyuan. Soil respiration response to seasonal freezing-thawing interference[J]. Journal of Temperate Forestry Research, 2018, 1(1): 48-52. |
周鑫, 叶天一, 申方圆. 土壤呼吸对季节性冻融干扰的响应[J]. 温带林业研究, 2018, 1(1): 48-52. | |
15 | Wang Ming, Liu Xingtu, Li Xiujun, et al. Soil respiration dynamics and its controlling factors of typical vegetation communities on meadow steppes in the western Songnen Plain[J]. Chinese Journal of Applied Ecology, 2014, 25(1): 45-52. |
王铭, 刘兴土, 李秀军, 等. 松嫩平原西部草甸草原典型植物群落土壤呼吸动态及影响因素[J]. 应用生态学报, 2014, 25(1): 45-52. | |
16 | Lu Xiaobo, Xu Haiming, Sun Chenghu, et al. Characteristics of soil temperature variations in China in recent 50 years[J]. Journal of Nanjing Institute of Meteorology, 2006, 29(5): 706-712. |
陆晓波, 徐海明, 孙丞虎, 等. 中国近50 a地温的变化特征[J]. 南京气象学院学报, 2006, 29(5): 706-712. | |
17 | Liu Huolin, Hu Zeyong, Yang Yaoxian, et al. Simulation of the freezing-thawing processes at Nagqu area over Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2015, 34(3): 676-683. |
刘火霖, 胡泽勇, 杨耀先, 等. 青藏高原那曲地区冻融过程的数值模拟研究[J]. 高原气象, 2015, 34(3): 676-683. | |
18 | Yang Shuhua, Wu Tonghua, Li Ren, et al. Spatial-temporal changes of the near-surface soil freeze-thaw status over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(1): 43-53. |
杨淑华, 吴通华, 李韧, 等. 青藏高原近地表土壤冻融状况的时空变化特征[J]. 高原气象, 2018, 37(1): 43-53. | |
19 | Peng Jian, Loew A, Zhang Shiqiang, et al. Spatial downscaling of satellite soil moisture data using a vegetation temperature condition index[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 558-566. |
20 | Karl T, Bretherton F, Easterling W, et al. Long-term climate monitoring by the global climate observing system (GCOS)[M]//Long-term climate monitoring by the global climate observing system. Dordrecht: Springer Netherlands, 1996: 5-17. |
21 | Guo Donglin, Yang Meixue, Wang Huijun. Characteristics of land surface heat and water exchange under different soil freeze-thaw conditions over the central Tibetan Plateau[J]. Hydrological Processes, 2011, 25(16): 2531-2541. |
22 | Meng Han, Jin Jiming. Effect of different atmospheric forcing data sets on simulation of basin land surface temperature[J]. Yangtze River, 2021, 52(1): 49-55, 95. |
孟含, 金继明. 不同大气强迫数据集对流域地表温度模拟的影响[J]. 人民长江, 2021, 52(1): 49-55, 95. | |
23 | Chen Boli, Shihua Lü, Luo Siqiong. Simulation analysis on land surface process at Maqu Station in the Qinghai-Xizang Plateau using community land model[J]. Plateau Meteorology, 2012, 31(6): 1511-1522. |
陈渤黎, 吕世华, 罗斯琼. CLM 3.5模式对青藏高原玛曲站陆面过程的数值模拟研究[J]. 高原气象, 2012, 31(6): 1511-1522. | |
24 | Chen Boli, Luo Siqiong, Shihua Lü, et al. Validation and comparison of the simulation at Zoigê station during freezing and thawing with land surface model CLM[J]. Climatic and Environmental Research, 2014, 19(5): 649-658. |
陈渤黎, 罗斯琼, 吕世华, 等. 陆面模式CLM对若尔盖站冻融期模拟性能的检验与对比[J]. 气候与环境研究, 2014, 19(5): 649-658. | |
25 | Wu Zhiyi, Hansachurila, Bai Yang. Study of the application and of remote sensing technology in environment monitoring[J]. Northern Environment, 2013, 25(5): 150-151. |
吴志毅, 韩萨出日拉, 白杨. 遥感技术在环境监测中的应用研究[J]. 北方环境, 2013, 25(5): 150-151. | |
26 | Bergstedt H, Zwieback S, Bartsch A, et al. Dependence of C-band backscatter on ground temperature, air temperature and snow depth in arctic permafrost regions[J]. Remote Sensing, 2018, 10(1): 142. |
27 | Kou Xiaokang, Zhang Yuzhi, Jin Mengjie, et al. Verification and analysis of land surface freeze-thaw change by passive microwave remote Sensing technique based on multi-layer soil temperature[J]. Geography and Geo-Information Science, 2020, 36(3): 49-55. |
寇晓康, 张玉芝, 靳梦杰, 等. 基于多层土壤温度的地表冻融变化被动微波遥感验证分析[J]. 地理与地理信息科学, 2020, 36(3): 49-55. | |
28 | Cohen J, Rautiainen K, Lemmetyinen J, et al. Sentinel-1 based soil freeze-thaw estimation in boreal forest environments[J]. Remote Sensing of Environment, 2021, 254: 112267. |
29 | England A W. Radiobrightness of diurnally heated, freezing soil[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 464-476. |
30 | Wegmüller U. The effect of freezing and thawing on the microwave signatures of bare soil[J]. Remote Sensing of Environment, 1990, 33(2): 123-135. |
31 | Liou Y A, England A W. Annual temperature and radiobrightness signatures for bare soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(4): 981-990. |
32 | Xiao Yao, Ma Mingguo, Wen Jianguang, et al. Progress in land surface temperature retrieval over complex surface[J]. Remote Sensing Technology and Application, 2021, 36(1): 33-43. |
肖尧, 马明国, 闻建光, 等. 复杂地表地表温度反演研究进展[J]. 遥感技术与应用, 2021, 36(1): 33-43. | |
33 | Wu Shengli, Liu Jian. Comparison of Arctic Sea ice concentration datasets[J]. Acta Oceanologica Sinica, 2018, 40(11): 64-72. |
武胜利, 刘健. 长序列北极海冰覆盖数据集对比分析[J]. 海洋学报, 2018, 40(11): 64-72. | |
34 | Zuerndorfer B W, England A W, Dobson M C, et al. Mapping freeze-thaw boundaries with SMMR data[J]. Agricultural and Forest Meteorology, 1990, 52(1/2): 199-225. |
35 | Brodzik M J, Long D G, Hardman M A, et al. MEaSUREs calibrated enhanced-resolution passive microwave daily EASE-Grid 2.0 brightness temperature ESDR, Version1[EB/OL]. [2022-06-08]. . |
36 | Ren Yanqun, Liu Hailong, Bao Anming, et al. Spatial and temporal characteristics of snow depth in the Tianshan Mountains derived from SSM/I and MODIS data[J]. Journal of Glaciology and Geocryology, 2015, 37(5): 1178-1187. |
任艳群, 刘海隆, 包安明, 等. 基于SSM/I和MODIS数据的天山山区积雪深度时空特征分析[J]. 冰川冻土, 2015, 37(5): 1178-1187. | |
37 | Du Jinyang, Kimball J, Shi Jiancheng, et al. Inter-calibration of satellite passive microwave land observations from AMSR-E and AMSR2 using overlapping FY3B-MWRI sensor measurements[J]. Remote Sensing, 2014, 6(9): 8594-8616. |
38 | Kim Y, Kimball J S, Du J,et al. Polar enhanced resolution freeze-thaw data record from AMSR-E and AMSR2 version1[EB/OL].[2022-06-08].. |
39 | Li Xin, Liu Qiang, Liu Qinhuo, et al. The progresses on the watershed allied telemetry experimental research(WATER): Remote sensing of key hydrological and ecological parameters[J]. Remote Sensing Technology and Application, 2012, 27(5): 650-662. |
李新, 刘强, 柳钦火, 等. 黑河综合遥感联合试验研究进展: 水文与生态参量遥感反演与估算[J]. 遥感技术与应用, 2012, 27(5): 650-662. | |
40 | Zhang Wei, Chen Quan, Zeng Jiangyuan, et al. A new algorithm for soil moisture retrieval using C and K-band Radiometer channels of ocean salinity satellite[C]//2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing, China. Piscataway, NJ: IEEE, 2016, 2997-3000. |
41 | Johnston J, Maggioni V, Houser P. Comparing global passive microwave freeze-thaw records: Investigating differences between Ka- and L-band products[J]. Remote Sensing of Environment, 2020, 247: 111936. |
42 | Zhang Lixin, Zhao Tianjie, Jiang Lingmei, et al. Estimate of phase transition water content in freeze-thaw process using microwave radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4248-4255. |
43 | O’Neill P, Entekhabi D, Njoku E, et al. The NASA soil moisture active passive (SMAP) mission: Overview[C]//2010 IEEE International Geoscience and Remote Sensing Symposium. Honolulu, HI, USA. Piscataway, NJ: IEEE, 2010: 3236-3239. |
44 | Hoekstra P, Delaney A. Dielectric properties of soils at UHF and microwave frequencies[J]. Journal of Geophysical Research, 1974, 79(11): 1699-1708. |
45 | England A W, Galantowicz J F, Zuerndorfer B W. A volume scattering explanation for the negative spectral gradient of frozen soil[C]// IGARSS’91 Remote Sensing: Global Monitoring for Earth Management. Espoo, Finland. Piscataway, NJ: IEEE, 1991, 3: 1175-1177. |
46 | England A W. Thermal microwave emission from a scattering layer[J]. Journal of Geophysical Research, 1975, 80(32): 4484-4496. |
47 | Wang Baogang, Jin Rui, Zhao Zebin, et al. Recently research progresses in detecting surface soil freeze-thaw cycles with passive microwave remote sensing[J]. Remote Sensing Technology and Application, 2018, 33(2): 193-201. |
王宝刚, 晋锐, 赵泽斌, 等. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201. | |
48 | Savi P, Ivan A, Ferraris S. Time-domain reflectometry (TDR) technique for the estimation of soil permittivity[M]//Principles, Application and Assessment in Soil Science. London: IntechOpen, 2011: 351-370. |
49 | Zuerndorfer B, England A W. Radiobrightness decision criteria for freeze-thaw boundaries[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(1): 89-102. |
50 | Judge J, Galantowicz J F, England A W, et al. Freeze-thaw classification for prairie soils using SSM/I radio brightnesses[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(4): 827-832. |
51 | Zhang T, Armstrong R L. Soil freeze-thaw cycles over snow-free land detected by passive microwave remote sensing[J]. Geophysical Research Letters, 2001, 28(5): 763-766. |
52 | Han Lijian, Tsunekawa A, Tsubo M. Monitoring near-surface soil freeze-thaw cycles in Northern China and Mongolia from 1998 to 2007[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12(5): 375-384. |
53 | Jin Rui. Long-term land surface freeze-thaw status datasets of China[J]. Remote Sensing Technology and Application, 2016, 31(4): 820-826. |
晋锐. 中国长时间序列地表冻融状态数据集[J]. 遥感技术与应用, 2016, 31(4): 820-826. | |
54 | Han Menglei, Yang Kun, Qin Jun, et al. An algorithm based on the standard deviation of passive microwave brightness temperatures for monitoring soil surface freeze-thaw state on the Tibetan Plateau[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2775-2783. |
55 | Jin Rui, Li Xin, Che Tao. A decision tree algorithm for surface soil freeze-thaw classification over China using SSM/I brightness temperature[J]. Remote Sensing of Environment, 2009, 113(12): 2651-2660. |
56 | Zhao Tianjie, Zhang Lixin, Jiang Lingmei, et al. Microwave radiation of frozen and thawed soils under complicated surface condition: Simulation and discrimination analysis[J]. Journal of Glaciology and Geocryology, 2009, 31(2): 220-226. |
赵天杰, 张立新, 蒋玲梅, 等. 复杂地表条件下冻融土的微波辐射特性模拟及判别分析[J]. 冰川冻土, 2009, 31(2): 220-226. | |
57 | Hu Wenxing, Chai Linna, Zhao Shaojie, et al. Improvementon soil freeze-thaw discriminant algorithm under complex surface conditions in cold regions[J]. Remote Sensing Technology and Application, 2017, 32(3): 395-405. |
胡文星, 柴琳娜, 赵少杰, 等. 寒区复杂地表冻融状态判别式算法改进[J]. 遥感技术与应用, 2017, 32(3): 395-405. | |
58 | Kou Xiaokang, Jiang Lingmei, Yan Shuang, et al. Research on the improvement of passive microwave freezing and thawing discriminant algorithms for complicated surface conditions[C]//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain. Piscataway, NJ: IEEE, 2018: 7161-7164. |
59 | Wang Pingkai, Zhao Tianjie, Shi Jiancheng, et al. Parameterization of the freeze-thaw discriminant function algorithm using dense in situ observation network data[J]. International Journal of Digital Earth, 2019, 12(8): 980-994. |
60 | Kim Y, Kimball J S, McDonald K C, et al. Developing a global data record of daily landscape freeze-thaw status using satellite passive microwave remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 949-960. |
61 | Schwank M, Stahli M, Wydler H, et al. Microwave L-band emission of freezing soil[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(6): 1252-1261. |
62 | Rautiainen K, Lemmetyinen J, Pulliainen J, et al. L-band radiometer observations of soil processes in boreal and subarctic environments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1483-1497. |
63 | Rautiainen K, Lemmetyinen J, Schwank M, et al. Detection of soil freezing from L-band passive microwave observations[J]. Remote Sensing of Environment, 2014, 147: 206-218. |
64 | Roy A, Royer A, Derksen C, et al. Evaluation of spaceborne L-band radiometer measurements for terrestrial freeze-thaw retrievals in Canada[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9): 4442-4459. |
65 | Rautiainen K, Parkkinen T, Lemmetyinen J, et al. SMOS prototype algorithm for detecting autumn soil freezing[J]. Remote Sensing of Environment, 2016, 180: 346-360. |
66 | Derksen C, Xu Xiaolan, Dunbar R S, et al. Retrieving landscape freeze-thaw state from Soil Moisture Active Passive (SMAP) radar and radiometer measurements[J]. Remote Sensing of Environment, 2017, 194: 48-62. |
67 | Kraatz S, Jacobs J M, Schröder R, et al. Improving SMAP freeze-thaw retrievals for pavements using effective soil temperature from GEOS-5: Evaluation against in situ road temperature data over the US[J]. Remote Sensing of Environment, 2020, 237: 111545. |
68 | Xi Jiaju, Zhao Shiqiang, Wang Mingshi, et al. Based on a relative frost factor algorithm retrieving landscape freeze-thaw state by ground-based L-Band radiometer[J]. Advances in Geosciences(Hans), 2020, 10(5): 10: 437-446. |
席家驹, 赵士强, 王铭实, 等. 基于陆基L波段辐射计的青藏高原地表冻融反演研究[J]. 地球科学前沿(汉斯), 2020, 10(5): 10: 437-446. | |
69 | England A. The Effect upon Microwave Emissivity of Volume Scattering in snow, in ice, and in frozen Soil[C]//Specialist Meeting on Microwave Scattering and Emission from the Earth, Berne, Switzerland, 1974: 273-287. |
70 | Zhao Tianjie, Zhang Lixin, Jiang Lingmei, et al. A new soil freeze-thaw discriminant algorithm using AMSR-E passive microwave imagery[J]. Hydrological Processes, 2011, 25(11): 1704-1716. |
71 | Zhao Shaojie. Study on microwave radiation characteristics of frozen soil[D]. Beijing: Beijing Normal University, 2011. |
赵少杰. 冻土微波辐射特征研究[D]. 北京: 北京师范大学, 2011. | |
72 | Wang Pingkai. Study on near-surface freeze-thaw monitoring method based on multi-source satellite remote sensing data[D]. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences University of Chinese Academy of Sciences, 2018. |
王平凯. 基于多源卫星遥感数据的近地表冻融状态监测方法研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2018. | |
73 | Roy A, Toose P, Williamson M, et al. Response of L-Band brightness temperatures to freeze-thaw and snow dynamics in a prairie environment from ground-based radiometer measurements[J]. Remote Sensing of Environment, 2017, 191: 67-80. |
74 | Escorihuela M J, Chanzy A, Wigneron J P, et al. Effective soil moisture sampling depth of L-band radiometry: a case study[J]. Remote Sensing of Environment, 2010, 114(5): 995-1001. |
75 | Zheng Donghai, Li Xin, Wang Xin, et al. Sampling depth of L-band radiometer measurements of soil moisture and freeze-thaw dynamics on the Tibetan Plateau[J]. Remote Sensing of Environment, 2019, 226: 16-25. |
76 | Shao Wanwan, Zhang Tingjun. Assessment of four near-surface soil freeze-thaw detection algorithms based on calibrated passive microwave remote sensing data over China[J]. Earth and Space Science, 2020, 7(7): e2019EA000807. |
77 | Wang Jian, Jiang Lingmei, Cui Huizhen, et al. Evaluation and analysis of SMAP, AMSR2 and MEaSUREs freeze-thaw products in China[J]. Remote Sensing of Environment, 2020, 242: 111734. |
78 | Jin Rui, Zhang Tingjun, Li Xin, et al. Mapping surface soil freeze-thaw cycles in China based on SMMR and SSM/I brightness temperatures from 1978 to 2008[J]. Arctic, Antarctic, and Alpine Research, 2015, 47(2): 213-229. |
79 | Kim Y, Kimball J S, Glassy J, et al. An extended global Earth system data record on daily landscape freeze-thaw status determined from satellite passive microwave remote sensing[J]. Earth System Science Data, 2017, 9(1): 133-147. |
80 | Kim Y, Kimball J S, Glassy J. A global record of daily landscape freeze-thaw status, version5[EB/OL].[2022-06-08]. . |
81 | Xu X, Dunbar R S, Derksen C, et al. SMAP L3 radiometer global and northern hemisphere daily 36 km EASE-grid freeze-thaw state, Version3[EB/OL].[2022-06-08]. . |
82 | Kim Y, Kimball J S, Xu Xiaolan, et al. Global assessment of the SMAP freeze-thaw data record and regional applications for detecting spring onset and frost events[J]. Remote Sensing, 2019, 11(11): 1317. |
83 | Hu Tongxi, Zhao Tianjie, Zhao Kaiguang, et al. A continuous global record of near-surface soil freeze-thaw status from AMSR-E and AMSR2 data[J]. International Journal of Remote Sensing, 2019, 40(18): 6993-7016. |
84 | Hu Tongxi, Zhao Tianjie, Shi Jiancheng, et al. High-resolution mapping of freeze-thaw status in China via fusion of MODIS and AMSR2 data[J]. Remote Sensing, 2017, 9(12): 1339. |
85 | Zhao Tianjie, Shi Jiancheng, Hu Tongxi, et al. Estimation of high-resolution near-surface freeze-thaw state by the integration of microwave and thermal infrared remote sensing data on the Tibetan Plateau[J]. Earth and Space Science, 2017, 4(8): 472-484. |
86 | Shao Wanwan, Zhang Tingjun. Comparison and analysis of the near-surface soil freeze-thaw status datasets obtained by passive microwave remote sensing[J]. Journal of Glaciology and Geocryology, 2021, 43(1): 285-295. |
邵婉婉, 张廷军. 被动微波遥感近地表土壤冻融状态数据产品对比及分析[J]. 冰川冻土, 2021, 43(1): 285-295. | |
87 | Wang Jian, Jiang Lingmei, Kou Xiaokang, et al. Downscaling method for near-surface freeze-thaw state monitoring in Genhe area of China[J]. Journal of Remote Sensing, 2019, 23(6): 1209-1222. |
王健, 蒋玲梅, 寇晓康, 等. 根河地区冻融监测和降尺度算法的验证分析[J]. 遥感学报, 2019, 23(6): 1209-1222. | |
88 | Yu Wenjun, Wu Tonghua, Zhuotong Nan, et al. A novel interpolation method for MODIS land surface temperature data on the Tibetan Plateau[C]//SPIE Asia-Pacific Remote Sensing. Proc SPIE 9260, Land Surface Remote Sensing II, Beijing, China. 2014, 9260: 189-198. |
89 | Zhao Tianjie, Shi Jiancheng, Hu Tongxi, et al. High Resolution Freeze/Thaw States Detection Using Combination of Passive Microwave and Thermal Infrared Observations[C]//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018: 8555-8558. |
90 | Montzka C, Jagdhuber T, Horn R, et al. Investigation of SMAP fusion algorithms with airborne active and passive L-band microwave remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 3878-3889. |
91 | Johnston J M, Houser P R, Maggioni V, et al. Informing improvements in freeze-thaw state classification using subpixel temperature[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-19. |
92 | Gao H R, Zhang Z J, Zhang W C, et al. Spatial downscaling based on spectrum analysis for soil freeze-thaw status retrieved from passive microwave[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11. |
93 | Jiang Huiru, Zheng Guanheng, Yi Yonghong, et al. Progress and challenges in studying regional permafrost in the Tibetan Plateau using satellite remote sensing and models[J]. Frontiers in Earth Science, 2020, 8: 560403. |
94 | Bateni S M, Huang Chunlin, Margulis S A, et al. Feasibility of characterizing snowpack and the freeze-thaw state of underlying soil using multifrequency active/passive microwave data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4085-4102. |
[1] | 吕敦波, 张帆, 张益峰, 杨科, 吕飞, 胡大伟. -160 ℃超低温冻融循环后花岗岩三点弯曲试验研究[J]. 冰川冻土, 2022, 44(6): 1796-1806. |
[2] | 刘启, 张泽, 张圣嵘, 恽晴飞, 付峻松. 冻融循环作用下砂土粒组变化的分形特征及其与长期强度的相关性分析[J]. 冰川冻土, 2022, 44(6): 1820-1832. |
[3] | 刘春龙, 刘奉银, 黄素娟, 付争, 王锐, 王松鹤. 冻融循环作用下改良灰土力学特性与孔隙特征试验研究[J]. 冰川冻土, 2022, 44(6): 1833-1841. |
[4] | 黄雨灵, 张吾渝, 季港澳, 解邦龙, 董超凡. 冻融循环作用下木质素磺酸钙改良黄土的力学特性研究[J]. 冰川冻土, 2022, 44(6): 1863-1874. |
[5] | 宋锦坡, 崔宏环, 胡淑旗, 高鹏飞. 寒区高吸力非饱和土的破坏准则研究[J]. 冰川冻土, 2022, 44(5): 1581-1592. |
[6] | 贾亮, 奴丽艳木·夏甫开提, 陈岑, 郭健, 包得祥. 快硬磷酸镁-铁铝酸盐复合水泥的抗冻性研究[J]. 冰川冻土, 2022, 44(3): 1021-1028. |
[7] | 刘大翔, 刘德玉, 童标, 杨悦舒, 丁瑜, 许文年. 冻融循环作用下植被混凝土团聚结构变化对养分固持能力的影响[J]. 冰川冻土, 2022, 44(2): 623-633. |
[8] | 张亮, 牛富俊, 刘明浩, 鞠鑫. 冻融损伤与围压对层状岩石强度各向异性的影响[J]. 冰川冻土, 2022, 44(2): 366-375. |
[9] | 王丹, 刘恩龙, 杨成松. 冻融循环作用下冻结掺和土料动力特性研究[J]. 冰川冻土, 2022, 44(2): 524-534. |
[10] | 张玉芝, 刘文龙, 王海永, 张莲海, 陈世杰, 朱晓东. 冻融循环作用下含水率对粗颗粒填料水分迁移影响的宏细观试验研究[J]. 冰川冻土, 2022, 44(2): 591-601. |
[11] | 黄佑芬, 吴道勇, 吴诗雨. 冻融循环条件下重塑硫酸盐渍土变形试验研究[J]. 冰川冻土, 2022, 44(2): 602-611. |
[12] | 董超凡, 张吾渝, 张瑞星, 黄雨灵, 高英. 冻融作用下木质素纤维改良黄土力学与热学特性试验研究[J]. 冰川冻土, 2022, 44(2): 612-622. |
[13] | 解邦龙, 张吾渝, 孙翔龙, 刘乐青, 刘成奎. 不同温控曲线对石灰改良黄土强度影响研究[J]. 冰川冻土, 2022, 44(1): 262-274. |
[14] | 刘艺阗, 姚济敏, 赵林, 肖瑶, 乔永平, 史健宗. 青藏高原唐古拉多年冻土区冻融循环过程中的能量平衡特征[J]. 冰川冻土, 2021, 43(4): 1073-1082. |
[15] | 付翔宇, 张泽, 杨成松, 恽晴飞, 明姣. 冻融循环作用下富平黄土微观结构几何类型变化研究[J]. 冰川冻土, 2021, 43(2): 484-496. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000