X img





作者投稿 专家审稿 编辑办公 编委办公 主编办公

冰川冻土 ›› 2013, Vol. 35 ›› Issue (5): 1248-1258.doi: 10.7522/j.issn.1000-0240.2013.0141

• 寒旱区水文水资源 • 上一篇    下一篇


刘友存1,2, 霍雪丽3, 郝永红1, 焦克勤4, 韩添丁4, 刘彦5, 刘志方5, 刘灿3   

  1. 1. 天津师范大学 天津市水资源与环境重点实验室, 天津 300387;
    2. 中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室, 北京 100038;
    3. 天津师范大学 城市与环境学院, 天津 300387;
    4. 中国科学院 寒区旱区环境与工程研究所, 甘肃 兰州 730000;
    5. 天津师范大学 数学科学学院, 天津 300387
  • 收稿日期:2013-02-17 修回日期:2013-05-13 出版日期:2013-10-25 发布日期:2013-11-07
  • 作者简介:刘友存(1977-),男,河北迁安人,2008年在巴黎地球物理研究院获博士学位,现主要从事水文水资源、河流侵蚀沉积过程的研究.E-mail:liuyoucun@gmail.com
  • 基金资助:

A Study of the Variation of Extreme Runoff in the Upstream of the Ürümqi River, Tianshan Mountains

LIU You-cun1,2, HUO Xue-li3, HAO Yong-hong1, JIAO Ke-qin4, HAN Tian-ding4, LIU Yan5, LIU Zhi-fang5, LIU Can3   

  1. 1. Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China;
    2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China;
    3. College of Urban and Environmental Science, Tianjin Normal University, Tianjin 300387, China;
    4. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou Gansu 730000, China;
    5. College of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, China
  • Received:2013-02-17 Revised:2013-05-13 Online:2013-10-25 Published:2013-11-07
  • Contact: 郝永红,E-mail:haoyh@sxu.edu.cn E-mail:haoyh@sxu.edu.cn

摘要: 以天山乌鲁木齐河上游作为研究对象, 结合乌鲁木齐河上游近50 a的实测月均径流变化资料, 对未来的月均径流进行了预测. 基于对重现水平的95%置信区间进行估计的结果表明, 乌鲁木齐河上游重现期为10 a、25 a、50 a和100 a的月均径流量极大值分别约为35.4 m3·s-1、39.9 m3·s-1、43.2 m3·s-1和46.3 m3·s-1;重现期为10 a、25 a、50 a和100 a的月均径流量极小值分别约为0.60 m3·s-1、0.43 m3·s-1、0.30 m3·s-1和0.18 m3·s-1. 在当前气候变化背景下, 乌鲁木齐河上游在2058年前后枯水期时可能发生断流现象. 该研究对乌鲁木齐河径流变化预测具有重要意义.

关键词: 广义Pareto分布, 重现期, 径流变化, 径流极值, 乌鲁木齐河

Abstract: Extreme value theory is the major means to deal with extreme events of small probability, which has been widely used in hydrology. In this paper, based on the theory and method of generalized Pareto distribution model, the extreme runoff in the upstream of the Ürümqi River, Tianshan Mountains was predicated. The results of different average runoff return levels, which contain 95% confidence intervals, indicate that the maximum average monthly runoff corresponding to 10 a, 25 a, 50 a and 100 a return period is 35.4 m3·s-1, 39.9 m3·s-1, 43.2 m3·s-1 and 46.3 m3·s-1, respectively, and the minimum average monthly runoff corresponding to 10 a, 25 a, 50 a and 100 a return period is 0.60 m3·s-1, 0.43 m3·s-1, 0.30 m3·s-1 and 0.18 m3·s-1, respectively, in the upstream of the Ürümqi River. Regarding the impact of present climate change, it is expected that the upstream of the river will dry up in the dry season around 2058. The results are only from the statistically significant associations. Of course, there are substantial uncertainties about the extreme runoff prediction.

Key words: generalized Pareto distribution, return period, variation of runoff, extreme runoff, Ürümqi River


  • P333