[1] Elhag M, Psilovikos A, Manakos I, et al. Application of the SEBS water balance model in estimating daily evapotranspiration and evaporative fraction from remote sensing data over the Nile Delta[J]. Water Resources Management, 2011, 25(11): 2731-2742. [2] Ma Weiqiang, Hafeez M, Rabbani U, et al. Retrieved actual ET using SEBS model from Landsat-5 TM data for irrigation area of Australia[J]. Atmospheric Environment, 2012, 59: 408-414. [3] Jia L, Xi G, Liu S, et al. Regional estimation of daily to annual regional evapotranspiration with MODIS data in the Yellow River Delta wetland[J]. Hydrology and Earth System Sciences, 2009, 13(10): 1775-1787. [4] Yang Yuting, Shang Songhao, Jiang Lei. Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China[J]. Agricultural and Forest Meteorology, 2012, 164: 112-122. [5] Bastiaanssen W, Menenti M, Feddes R, et al. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation[J]. Journal of Hydrology, 1998, 212/213: 198-212. [6] Menenti M, Choudhury B. Parameterization of land surface evaporation by means of location dependent potential evaporation and surface temperature range[C]//Exchange Processes at the Land Surface for a Range of Space and Time Scales. Wallingford, Eng.: IAHS Press, 1993: 561-568. [7] Roerink G, Su Z, Menenti M. S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance[J]. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 2000, 25(2): 147-157. [8] Su Z. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences Discussions, 2002, 6(1): 85-100. [9] Allen R G, Tasumi M, Trezza R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC): model[J]. Journal of Irrigation and Drainage Engineering, 2007, 133(4): 380-394. [10] Roerink G, Bastiaanssen W, Chambouleyron J, et al. Relating crop water consumption to irrigation water supply by remote sensing[J]. Water Resources Management, 1997, 11(6): 445-465. [11] Bastiaanssen W, Brito R, Bos M, et al. Low cost satellite data for monthly irrigation performance monitoring: benchmarks from Nilo Coelho, Brazil[J]. Irrigation and Drainage Systems, 2001, 15(1): 53-79. [12] Ramos J, Kay J, Cratchley C, et al. Crop management in a district within the Ebro River Basin using remote sensing techniques to estimate and map irrigation volumes[J]. WIT Transactions on Ecology and the Environment, 2006, 96: 365-377. [13] Folhes M, RennC, Soares J. Remote sensing for irrigation water management in the semi-arid Northeast of Brazil[J]. Agricultural Water Management, 2009, 96(10): 1398-1408. [14] Allen R G, Tasumi M, Morse A, et al. A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning[J]. Irrigation and Drainage Systems, 2005, 19(3/4): 251-268. [15] Droogers P, Immerzeel W W, Lorite I J. Estimating actual irrigation application by remotely sensed evapotranspiration observations[J]. Agricultural Water Management, 2010, 97(9): 1351-1359. [16] Gokmen M, Vekerdy Z, Verhoef A, et al. Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions[J]. Remote Sensing of Environment, 2012, 121: 261-274. [17] Cai Guoying, Xu Zhongmin. Input-output analysis of the water consumption for economic development in the middle reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 770-775. [蔡国英, 徐中民. 黑河流域中游地区国民经济用水投入产出分析: 以张掖市为例[J]. 冰川冻土, 2013, 35(3): 770-775.] [18] Wang Shugong, Kang Ersi, Jin Bowen, et al. A study of estimation of evapotranspiration on grass land in the mountains of Hei River Basin[J]. Journal of Glaciology and Geocryology, 2003, 25(5): 558-565. [王书功, 康尔泗, 金博文, 等. 黑河山区草地蒸散发量估算方法研究[J]. 冰川冻土, 2003, 25(5): 558-565.] [19] Ji Xibin, Kang Ersi, Zhao Wenzhi, et al. Simulation of the evapotranspiration from irrigational farmlands in the oases of the Heihe River Basin[J]. Journal of Glaciology and Geocryology, 2004, 26(6): 713-719. [吉喜斌, 康尔泗, 赵文智, 等. 黑河流域山前绿洲灌溉农田蒸散发模拟研究[J]. 冰川冻土, 2004, 26(6): 713-719.] [20] Zhou Jian, Cheng Guodong, Li Xin, et al. Application of remote sensing technology to estimate river basin evapotranspiration[J]. Journal of Hydraulic Engineering, 2009, 40(6): 679-687. [周剑, 程国栋, 李新, 等. 应用遥感技术反演流域尺度的蒸散发[J]. 水利学报, 2009, 40(6): 679-687.] [21] Liu Suhua, Wang Weizhen, Kobayashi T. The evaporation from irrigation channels estimated by energy balance method in the middle reaches of the Heihe River[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 80-87. [刘素华, 王维真, 小林哲夫. 基于能量平衡法的黑河中游灌溉渠道蒸发量估算[J]. 冰川冻土, 2014, 36(1): 80-87.] [22] Tian Wei, Li Xin, Cheng Guodong, et al. Analyzing water consumption in middle reaches of Heihe River based on groundwater-land surface coupling model[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 668-679. [田伟, 李新, 程国栋, 等. 基于地下水陆面过程耦合模型的黑河干流中游耗水分析[J]. 冰川冻土, 2012, 34(3): 668-679.] [23] Pan M, Wood E F, Wójcik R, et al. Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation[J]. Remote Sensing of Environment, 2008, 112(4): 1282-1294. [24] van der Kwast J, Timmermans W, Gieske A, et al. Evaluation of the surface energy balance system (SEBS) applied to ASTER imagery with flux-measurements at the SPARC 2004 site (Barrax, Spain)[J]. Hydrology and Earth System Sciences Discussion, 2009, 6(1): 1165-1196. [25] Ding Hongwei, Hu Xinglin, Lan Yongchao, et al. Characteristics and conversion of water resources in the Heihe River Basin[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1460-1469. [丁宏伟, 胡兴林, 蓝永超, 等. 黑河流域水资源转化特征及其变化规律[J]. 冰川冻土, 2012, 34(6): 1460-1469.] [26] Wang Jun, Meng Jijun. Characteristics and tendencies of annual runoff variations in the Heihe River Basin during the past 60 years[J]. Scientia Geographica Sinica, 2008, 28(1): 83-88. [王钧, 蒙吉军. 黑河流域近60年来径流量变化及影响因素[J]. 地理科学, 2008, 28(1): 83-88.] [27] Qi S-Z, Luo F. Water environmental degradation of the Heihe River Basin in arid northwestern China[J]. Environmental Monitoring and Assessment, 2005, 108(1/2/3): 205-215. [28] Liu Wei, Ma Jun, Xi Haiyang, et al. The land potential productivity in Ejina oasis in the lower reaches of the Heihe River: dynamic change and driving factors[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1336-1345. [刘蔚, 马骏, 席海洋, 等. 黑河下游额济纳绿洲土地生产潜力的动态变化及影响因素分析[J]. 冰川冻土, 2012, 34(6): 1336-1345.] [29] Liu Wei, Wang Zhongjing, Xi Haiyang. Variationsof physical and chemical properties of water and soil and their significance to ecosystem in the lower reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 2008, 30(4): 688-696. [刘蔚, 王忠静, 席海洋. 黑河下游水土理化性质变化及生态环境意义[J]. 冰川冻土, 2008, 30(4): 688-696.] [30] Li Xin, Cheng Guodong, Liu Shaomin, et al. Heihe watershed allied telemetry experimental research (HiWATER): scientific objectives and experimental design[J]. Bulletin of the American Meteorological Society, 2013, 94(8): 1145-1160. [31] Pan Xiaoduo, Li Xin, Shi Xiaokang, et al. Dynamic downscaling of near-surface air temperature at the basin scale using WRF: a case study in the Heihe River Basin, China[J]. Frontiers of Earth Science, 2012, 6(3): 314-323. [32] Xu Ziwei, Liu Shaowei, Gong Lijuan, et al. A study on the data processing and quality assessment of the eddy covariance system[J]. Advances in Earth Science, 2008, 23(4): 357-370. [徐自为, 刘绍民, 宫丽娟, 等. 涡动相关仪观测数据的处理与质量评价研究[J]. 地球科学进展, 2008, 23(4): 357-370.] [33] Liu S, Xu Z, Wang W, et al. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem[J]. Hydrology & Earth System Sciences, 2011, 15(4): 1291-1306. |