X img

官方微信

img

群号:冰川冻土交流群

QQ群:218834310

高级检索
作者投稿 专家审稿 编辑办公 编委办公 主编办公

冰川冻土 ›› 2015, Vol. 37 ›› Issue (4): 1059-1066.doi: 10.7522/j.issn.1000-0240.2015.0118

• 寒区科学与技术 • 上一篇    下一篇

基于NDSI-NDVI特征空间的积雪面积反演研究

陈文倩, 丁建丽, 孙永猛, 王瑾杰, 张喆   

  1. 新疆大学 资源与环境科学学院 绿洲生态教育部重点实验室, 新疆 乌鲁木齐 830046
  • 收稿日期:2015-01-06 修回日期:2015-05-09 出版日期:2015-08-25 发布日期:2016-01-18
  • 通讯作者: 丁建丽, E-mail: Ding_jl@163.com. E-mail:Ding_jl@163.com
  • 作者简介:陈文倩(1988-), 女, 河南商丘人, 2013年毕业于新疆大学, 现为新疆大学在读硕士研究生, 主要从事干旱区资源环境及遥感应用研究. E-mail: mascotup@126.com
  • 基金资助:
    国家自然科学基金项目 (41161059); 自治区科技支疆项目(201504051064); 2014新疆研究生科研创新项目(XJGRI2014022)资助

Retrieval of snow cover area based on NDSI-NDVI feature space

CHEN Wenqian, DING Jianli, SUN Yongmeng, WANG Jinjie, ZHANG Zhe   

  1. Ministry of Education Key Laboratory of Oasis Ecology, College of Resource and Environment Science, Xinjiang University, Vrümqi 830046, China
  • Received:2015-01-06 Revised:2015-05-09 Online:2015-08-25 Published:2016-01-18

摘要: 积雪是新疆高海拔地区大多数河流的重要补给来源之一, 不仅是春汛期间融雪性洪水灾害和冰冻灾害的直接原因, 在水资源管理、 灾害防治和融雪模拟预报中也扮演着重要角色. 针对目前积雪信息提取方法的优势与不足, 结合二维特征空间理论, 构建积雪信息反演模型, 并与支持向量机提取积雪信息进行精度对比分析. 结果表明: 相比其他积雪信息提取方法, 利用归一化积雪指数(NDSI)和归一化植被指数(NDVI)建立二维特征空间, 且在特征空间基础之上构建的NN模型, 反演新疆北部积雪信息精度较高, 相关系数达0.837, 提取精度优于支持向量机(SVM)方法, 对当地防洪灾害模拟预测、 生态环境保护、 社会经济发展等方面具有一定参考意义.

关键词: 特征空间, MODIS, NN模型, 积雪面积

Abstract: Snow is one of the important water resources of most rivers in high altitudes of Xinjiang region. It is not only the direct cause of spring flood due to snow and ice melting, but also plays an important role in local water resource management, prevention disasters, forecast and simulation of snowmelt. Therefore, the extraction of snow cover information seems to have become one of the most important basic works at locally. In this paper, in allusion to the advantages and disadvantages of other extraction methods of snow information at present, a retrieval model of snow information is built, and compared the accuracy of extracting snow information with that from the support vector machines. The comparison shows that, relative to other snow information extraction methods, the NN model is better, which is constructed on the basis of the two-dimensional feature space by using of normalized difference snow index (NDSI) and normalized difference vegetation index (NDVI). It is confirmed that NN model is able to extract snow information in northern Xinjiang region with correlation coefficient of up to 0.837, better than support vector machine (SVM) method. It is useful to flood control, disaster simulation, and prediction of the local ecological and environmental protection effects and other aspects of social and economic development.

Key words: feature space, MODIS, NN model, snow cover

中图分类号: 

  • P426.63+5