[1] Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis[J]. Annual review of plant biology, 1989, 40(1):503-537. [2] O'Leary M H. Carbon isotopes in photosynthesis[J]. Bioscience, 1988, 38(5):328-336. [3] Song Yi, Jin Long, Chen Jianbing. Study of the vegetation change due to the reinforcement and rebuilding along the Qinghai-Tibet Highway[J]. Journal of Glaciology and Geocryology, 2014, 36(4):1017-1025.[宋怡, 金龙, 陈建兵. 青藏公路工程活动对沿线植被覆盖的影响[J]. 冰川冻土, 2014, 36(4):1017-1025.] [4] An Baosheng, Cheng Guodong. The impact of Qinghai-Tibet Railway on the ecological footprint and carrying capacity of Tibet[J]. Journal of Glaciology and Geocryology, 2013, 35(5):1292-1300.[安宝晟, 程国栋. 青藏铁路开通后对西藏生态足迹和生态承载力的影响[J]. 冰川冻土, 2013, 35(5):1292-1300.] [5] Luo Yayong, Meng Qingtao, Zhang Jinghui, et al. Species diversity and biomass in relation to soil properties of alpine meadows in the eastern Tibetan Plateau in different degradation stages[J]. Journal of Glaciology and Geocryology, 2014, 6(5):1298-1305.[罗亚勇, 孟庆涛, 张静辉, 等. 青藏高原东缘高寒草甸退化过程中植物群落物种多样性、生产力与土壤特性的关系[J]. 冰川冻土, 2014, 6(5):1298-1305.] [6] Yin Guo'an, Niu Fujun, Lin Zhanju, et al. The distribution characteristics of permafrost along the Qinghai-Tibet Railway and their response to environmental change[J]. Journal of Glaciology and Geocryology, 2014, 36(4):772-781.[尹国安, 牛富俊, 林战举, 等.青藏铁路沿线多年冻土分布特征及其对环境变化的响应[J]. 冰川冻土, 2014, 36(4):772-781.] [7] McDowell N G, Licata J, Bond B J. Environmental sensitivity of gas exchange in different-sized trees[J]. Oecologia, 2005, 145(1):9-20. [8] Ryan M G, Yoder B J. Hydraulic limits to tree height and tree growth[J]. Bioscience, 1997, 47(4):235-242. [9] Ryan M G, Bond B J, Law B E, et al. Transpiration and whole-tree conductance in ponderosa pine trees of different heights[J]. Oecologia, 2000, 124(4):553-560. [10] Martinelli L A, Almeida S, Brown I F, et al. Stable carbon isotope ratio of tree leaves, boles and fine litter in a tropical forest in Rondonia, Brazil[J]. Oecologia, 1998, 114(2):170-179. [11] Farquhar G D, O'Leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Functional Plant Biology, 1982, 9(2):121-137. [12] Schulze E D, Mooney H A, Sala O E, et al. Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia[J]. Oecologia, 1996, 108(3):503-511. [13] Liu Weiguo, Feng Xiahong, Ning Youfeng, et al. δ13C variation of C3 and C4 plants across an Asian monsoon rainfall gradient in arid northwestern China[J]. Global Change Biology, 2005, 11(7):1094-1100. [14] Schulze E D, Williams R J, Farquhar G D, et al. Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia[J]. Functional Plant Biology, 1998, 25(4):413-425. [15] Schulze E D, Turner N C, Nicolle D, et al. Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia[J]. Tree Physiology, 2006, 26(4):479-492. [16] Chen Tuo, Qin Dahe, He Yuanqing, et a1. The pattern of stable carbon isotope ratios in Sabina przewalskii[J]. Journal of Glaciology and Geocryology, 2002, 24(5):571-573.[陈拓, 秦大河, 何元庆, 等. 祁连圆柏中稳定同位素分布特征[J]. 冰川冻土, 2002, 24(5):571-573.] [17] Shao Xuemei, Huang Lei, Liu Hongbin, et al. Reconstruction of precipitation variation from tree rings in recent 1000 years in Delingha, Qinghai[J]. Science in China(Series D:Earth Sciences), 2005, 48(7):939-949.[邵雪梅, 黄磊, 刘洪滨, 等. 树轮记录的青海德令哈地区千年降水变化[J]. 中国科学(D辑:地球科学), 2004, 34(2):145-153.] [18] Liu Xiaohong, An Wenling, Liang Eryuan, et al. Spatial-temporal variability and climatic significance of tree ring's δ13C of Picea crassifolia on the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2010, 32(4):666-676.[刘晓宏, 安文玲, 梁尔源, 等.祁连山青海云杉树轮δ13C的时空变化及其气候意义[J]. 冰川冻土, 2010, 32(4):666-676.] [19] Zhang Peng, Wang Gang, Zhang Tao, et al. Responses of foliar δ13C in Sabina przewalskii and Picea crassifolia to altitude and its mechanism in the Qilian Mountains, China[J]. Chinese Journal of Plant Ecology, 2010,34(2):125-133.[张鹏, 王刚, 张涛, 等. 祁连山两种优势乔木叶片δ13C的海拔响应及其机理[J]. 植物生态学报, 34(2), 125-133.] [20] Zhao Changming, Gao Xianling, Ma Renyi, et a1. Responses of Sabina przewalskii and Picea crassifolia seedlings to different draught stress of soil in ecophysiological characteristics[J]. Journal of Glaciology and Geocryology, 2012, 34(1):147-154.[赵长明, 高贤良, 马仁义, 等.祁连圆柏和青海云杉幼苗生理生态特征对土壤干旱胁迫的响应[J]. 冰川冻土, 2012, 34(1):147-154.] [21] Li Youbin, Chen Tuo, Zhang Youfu, et al. The relation of seasonal pattern in stable carbon compositions to meteorological variables in the leaves of Sabina przewalskii Kom. and Sabina chinensis(Lin.) Ant[J]. Environmental geology, 2007, 51(7):1279-1284. [22] Ma Jianying, Chen Tuo, Qiang Weiya, et al. Correlations between foliar stable carbon isotope composition and environmental factors in desert plant Reaumuria soongorica(Pall.) Maxim[J]. Journal of Integrative Plant Biology, 2005, 47(9):1065-1073. [23] Walcroft A S, Silvester W B, Grace J C, et al. Effects of branch length on carbon isotope discrimination in Pinus radiata[J]. Tree Physiology, 1996, 16(1/2):281-286. [24] Ishii H T, Jennings G M, Sillett S C, et al. Hydrostatic constraints on morphological exploitation of light in tall Sequoia sempervirens trees[J]. Oecologia, 2008, 156(4):751-763. [25] Francey R J, Gifford R M, Sharkey T D, et al. Physiological influences on carbon isotope discrimination in huon pine(Lagarostrobos franklinii)[J]. Oecologia, 1985, 66(2):211-218. [26] He Chunxia, Li Jiyue, Guo Ming et al. Changes of leaf photosynthetic characteristics and water use efficiency along tree height of 4 tree species[J]. Acta Ecologica Sinica, 2008, 28(7):3008-3016.[何春霞, 李吉跃, 郭明, 等. 4种乔木叶片光合特性和水分利用效率随树高的变化[J]. 生态学报, 2008, 28(7):3008-3016.] [27] Yan Changrong, Han Xinguo, Chen Lingzhi, et al. Foliar δ13C within temperate deciduous forest:its spatial change and interspecies variation[J]. Acta Botanica Sinica, 1998, 40(9), 853-859.[严昌荣, 韩兴国, 陈灵芝, 等. 暖温带落叶阔叶林主要植物叶片中δ13C值的种间差异及时空变化[J]. 植物学报, 1998, 40(9):853-859.] [28] Koch G W, Sillett S C, Jennings G M, et al. The limits to tree height[J]. Nature, 2004, 428(6985):851-854. [29] Evans J, Loreto F. Acquisition and Diffusion of CO2 in Higher Plant Leaves[M]. Photosynthesis:Physiology and Metabolism, 2000. [30] McDowell N G, Adams H D, Bailey J D, et al. Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes[J]. Ecological Applications, 2006, 16(3):1164-1182. [31] Barnard H R, Ryan M G. A test of the hydraulic limitation hypothesis in fast-growing Eucalyptus saligna[J]. Plant, Cell & Environment, 2003, 26(8):1235-1245. [32] Phillips N G, Ryan M G, Bond B J, et al. Reliance on stored water increases with tree size in three species in the Pacific Northwest[J]. Tree Physiology, 2003, 23(4):237-245. [33] Magnani F, Leonardi S, Tognetti R, et al. Modelling the surface conductance of a broad-leaf canopy:effects of partial decoupling from the atmosphere[J]. Plant, Cell & Environment, 1998, 21(8):867-879. [34] McDowell N G, Phillips N, Lunch C, et al. An investigation of hydraulic limitation and compensation in large, old Douglas-fir trees[J]. Tree Physiology, 2002, 22(11):763-774. [35] Duursma R A, Marshall J D. Vertical canopy gradients in δ13C correspond with leaf nitrogen content in a mixed-species conifer forest[J]. Trees, 2006, 20(4):496-506. [36] Hanba Y T, Mori S, Lei T T, et al. Variations in leaf δ13C along a vertical profile of irradiance in a temperate Japanese forest[J]. Oecologia, 1997, 110(2):253-261. [37] Tanaka-Oda A, Kenzo T, Koretsune S, et al. Ontogenetic changes in water-use efficiency(δ13C) and leaf traits differ among tree species growing in a semiarid region of the Loess Plateau, China[J]. Forest ecology and management, 2010, 259(5):953-957. [38] Li Shanjia, Zhang Youfu, Chen Tuo. Relationships between foliar stable carbon isotope composition and environmental factors and leaf element contents of Pinus tabulaeformis in northwestern China[J]. Chinese Journal of Plant Ecology, 2011, 35(6):596-604.[李善家, 张有福, 陈拓. 西北油松叶片δ13C特征与环境因子和叶片矿质元素的关系[J]. 植物生态学报, 2011, 35(6):596-604.] [39] Friend A D, Woodward F I. Evolutionary and ecophysiological responses of mountain plants to the growing season environment[J]. Advances in Ecological Research, 1990, 20:59-124. [40] Han Wenxuan, Fang Jingyun, Guo Dali, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2):377-385. [41] Zheng Shuxia, Shangguan Zhouping. Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China[J]. Trees, 2007, 21(3):357-370. [42] Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408(6812):578-580. [43] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30):11001-11006. [44] Kloeppel B D, Gower S T, Treichel I W, et al. Foliar carbon isotope discrimination in Larix species and sympatric evergreen conifers:a global comparison[J]. Oecologia, 1998, 114(2):153-159. [45] Li Chunyang, Wu Chengchun, Duan Baoli, et al. Age-related nutrient content and carbon isotope composition in the leaves and branches of Quercus aquifolioides along an altitudinal gradient[J]. Trees, 2009, 23(5):1109-1121. [46] Livingston N J, Guy R D, Sun Z J, et al. The effects of nitrogen stress on the stable carbon isotope composition, productivity and water use efficiency of white spruce(Picea glauca(Moench) Voss) seedlings[J]. Plant, Cell & Environment, 1999, 22(3):281-289. [47] Zhao Liangju, Xiao Honglang, Liu Xiaohong. Variations of foliar carbon isotope discrimination and nutrient concentrations in Artemisia ordosica and Caragana korshinskii at the southeastern margin of China's Tengger Desert[J]. Environmental Geology, 2006, 50(2):285-294. [48] Wu Jie, Pan Hongli, Du Zhong, et al. Responses of tissue non-structural carbohydrates and leaf nitrogen contents to altitude in two dwarf bamboos in Wolong[J]. Acta Ecologica Sinica, 2010, 30(3):610-618.[吴杰, 潘红丽, 杜忠, 等. 卧龙竹类非结构性碳水化合物与叶氮含量对海拔的响应[J]. 生态学报, 2010, 30(3):610-618.] [49] Evans J R. Photosynthesis and nitrogen relationships in leaves of C3 plants[J]. Oecologia, 1989, 78(1):9-19. |