[1] Zhu Guanghua, Tao Ling, Ren Jun. Evaluation of using land for constructing Qinghai-Tibet Railway on native vegetation[J]. Acta Agrestia Sinica, 2006, 14(2):160-164, 180.[祝广华, 陶玲, 任珺. 青藏铁路工程迹地对植被的影响评价[J]. 草地学报, 2006, 14(2):160-164, 180.][2] Niu Qinghe, Qu Jianjun, Zhang Kecun, et al. Status of Aeolian-sand disaster and estimation of mechanical sand-controlling benefit at typical sections of Qinghai-Tibet Railway[J]. Journal of Desert Research, 2009, 29(4):596-603.[牛清河, 屈建军, 张克存, 等. 青藏铁路典型路段风沙灾害现状与机械防沙效益估算[J]. 中国沙漠, 2009, 29(4):596-603.][3] Xie Shengbo, Qu Jianjun. Effect of sand sediments accumulated in sand-control projects on the thermal regions of underlying permafrost and its mechanism[J]. Journal of the China Railway Society, 2013, 35(12):77-82.[谢胜波, 屈建军. 青藏铁路工程防沙产生的积沙对下伏冻土的热影响及机理[J]. 铁道学报, 2013, 35(12):77-82.][4] Liu Zhimin, Zhao Wenzhi. Shifting-sand control in central Tibet[J]. Ambio:A Journal of the Human Environment, 2001, 30(6):376-380.[5] Zou Xueyong, Li Sen, Zhang Chunlai, et al. Desertification and control plan in the Tibet Autonomous Region of China[J]. Journal of Arid Environments, 2002, 51(2):183-198.[6] Jackson R D, Idso S B, Otterman J. Surface albedo and desertification[J]. Science, 1975, 189(4207):1012-1015.[7] Zhang Jianming, Sheng Yu, Lai Yuanming. Exprimental study on thermal conductivity of railway ballast[J]. Journal of Glaciology and Geocryology, 2003, 25(6):628-631.[张建明, 盛煜, 赖远明. 铁路碎石道碴层导热系数测试研究[J]. 冰川冻土, 2003, 25(6):628-631.][8] Zhang Mingyi, Liu Deren, Li Shuangyang, et al. Experimental study of the ventilation drag parameters in a railway ballast layer[J]. Journal of Glaciology and Geocryology, 2009, 31(2):188-192.[张明义, 刘德仁, 李双洋, 等. 铁路碎石道碴层通风阻力参数试验研究[J]. 冰川冻土, 2009, 31(2):188-192.][9] Qin Yinghong, Tan Kanghao, Yang Haifeng, et al. The albedo of crushed-rock layers and its implication to cool roadbeds in permafrost regions[J]. Cold Regions Science and Technology, 2016, 128:32-37.[10] Zhang Kecun, Qu Jianjun, Yao Zhengyi, et al. Sand damage and its control along the Golha section of the Qinghai-Tibet Railway[J]. Arid Land Geography, 2014, 37(1):74-80.[张克存, 屈建军, 姚正毅, 等. 青藏铁路格拉段风沙危害及其防治[J]. 干旱区地理, 2014, 37(1):74-80.][11] Xie Shengbo, Qu Jianjun, Pang Yingjun, et al. Causes and controlling mode of sand hazards in Honlianghe section of Qinghai-Tibet Railway[J]. Journal of the China Railway Society, 2014(11):99-105.[谢胜波, 屈建军, 庞营军, 等. 青藏铁路红梁河段沙害成因及防治模式[J]. 铁道学报, 2014(11):99-105.][12] Xie Shengbo, Qu Jianjun, Liu Bing, et al. Advances in research on the sand hazards its controls along the Qinghai-Tibet Railway[J]. Journal of Desert Research, 2014, 34(1):42-48.[谢胜波, 屈建军, 刘冰, 等. 青藏铁路沙害及其防治研究进展[J]. 中国沙漠, 2014, 34(1):42-48.][13] Chen Lin, Yu Wenbing, Han Fenglei, et al. Impacts of aeolian sand on cooling effect of crushed-rock embankment of Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2015, 37(1):147-155.[陈琳, 喻文兵, 韩风雷, 等. 风积沙对青藏铁路块碎石路基降温效果的影响[J]. 冰川冻土, 2015, 37(1):147-155.][14] He Zhilin, Zu Ruiping, Zhang Kecun, et al. Laboratory experiment of the influence of aeolian sand accumulationon permafrost temperature[J]. Journal of Glaciology and Geocryology, 2015, 37(1):156-161.[贺志霖, 俎瑞平, 张克存, 等. 风沙堆积对多年冻土温度影响的室内试验研究[J]. 冰川冻土, 2015, 37(1):156-161.][15] ASTM. ASTM C 1549-09:Standard test method for determination of solar reflectance near ambient temperature using a portable solar reflectometer[S]. Standard of the American Society for Testing and Materials, 2009.[16] Akbari H, Levinson R, Stern S. Procedure for measuring the solar reflectance of flat or curved roofing assemblies[J]. Solar Energy, 2008, 82(7):648-655.[17] Qin Yinghong, Tan Kanghao, Liang Jia. Theory and procedure for measuring the albedo of a roadway embankment[J]. Cold Regions Science and Technology, 2016, 126:30-35.[18] ASTM. ASTM E 1918-06:Standard test method for measuring solar reflectance of horizontal and low-sloped surfaces in the field[S]. American Society for Testing and Materials, 2006.[19] Akbari H, Konopacki S, Pomerantz M. Cooling energy savings potential of reflective roofs for residential and commercial buildings in the United States[J]. Energy, 1999, 24(5):391-407.[20] Siegel R, Howell J R. Thermal radiation heat transfer[M]. New York:McGraw-Hill, 1972.[21] Reifsnyder W E. Radiation geometry in the measurement and interpretation of radiation balance[J]. Agricultural Meteorology, 1967, 4(4):255-265.[22] Chen Guodong, Lai Yuanming, Sun Zhizhong, et al. On the "thermal diode" function of crushed rock laye[J]. Journal of Glaciology and Geocryology, 2007, 29(1):1-7.[程国栋, 赖远明, 孙志忠, 等. 碎石层的"热半导体"作用[J]. 冰川冻土, 2007, 29(1):1-7.][23] Zhang Wei, He Yuanqing, Liu Jing. Numerical analysis on the thermal regime around an anti-frost ballast subdrainwithin roadbed in deep seasonally frozen regions[J]. Journal of Glaciology and Geocryology, 2015, 37(4):991-1001.[张蔚, 何元庆, 刘婧. 深季节冻土区路基防冻胀道砟碎石排水盲沟热状况的数值分析[J]. 冰川冻土, 2015, 37(4):991-1001.][24] Lai Yuanming, Zhang Mingyi, Yu Wenbing, et al. The influence of boundary conditions on the cooling effect and mechanism of ripped-rock layers[J]. Journal of Glaciology and Geocryology, 2005, 27(2):163-168.[赖远明, 张明义, 喻文兵, 等. 边界条件对碎石层降温效果及机理的影响[J]. 冰川冻土, 2005, 27(2):163-168.][25] Zhang Mimgyi, Lai Yuanming, Yu Wenbing, et al. Contrast experimental study on cooling effect and mechanism between closed and open riprapped-embankments[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15):2671-2677.[张明义, 赖远明, 喻文兵, 等. 封闭与开放抛石路堤降温效果及机理对比试验研究[J]. 岩石力学与工程学报, 2005, 24(15):2671-2677.][26] Lai Yuanming, Zhang Mingyi, Yu Wenbing, et al. Laboratory study of particle size for optimal cooling effect of closed crushed-rock layers[J]. Journal of Glaciology and Geocryology, 2006, 28(5):755-759.[赖远明, 张明义, 喻文兵, 等. 封闭块碎石层最佳降温粒径的室内试验研究[J]. 冰川冻土, 2006, 28(5):755-759.][27] Levinson R, Akbari H, Berdahl P. Measuring solar reflectance (Part I):defining a metric that accurately predicts solar heat gain[J]. Solar Energy, 2010, 84(9):1717-1744.[28] Levinson R, Berdahl P, Akbari H, et al. Methods of creating solar-reflective nonwhite surfaces and their application to residential roofing materials[J]. Solar Energy Materials and Solar Cells, 2007, 91(4):304-314.[29] Baneshi M, Maruyama S, Komiya A. The effects of TiO2 pigmented coatings characteristics on temperature and brightness of a coated black substrate[J]. Solar Energy, 2012, 86(1):200-207.[30] Weiser U, Olefs M, Schöner W, et al. Correction of broadband snow albedo measurements affected by unknown slope and sensor tilts[J]. The Cryosphere, 2016, 10(2):775-790.[31] Conway J P, Cullen N J, Spronken Smith R A, et al. All-sky radiation over a glacier surface in the southern Alps of New Zealand:characterizing cloud effects on incoming shortwave, longwave and net radiation[J]. International Journal of Climatology, 2015, 35(5):699-713.[32] Philipona R, Kräuchi A, Brocard E. Solar and thermal radiation profiles and radiative forcing measured through the atmosphere[J]. Geophysical Research Letters, 2012, doi:10.1029/2012GL052087.[33] Chen Zheng, Yang Lüfeng, Feng Qingge. Image processing method for the area measure of paste and aggregate on concrete section[J]. Concrete, 2012(3):25-27.[陈正, 杨绿峰, 冯庆革. 混凝土断面浆体和骨料面积的图像分析方法研究[J]. 混凝土, 2012(3):25-27.][34] Berdahl P, Akbari H, Jacobs J, et al. Surface roughness effects on the solar reflectance of cool asphalt shingles[J]. Solar Energy Materials and Solar Cells, 2008, 92(4):482-489. |