[1] Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing:Science Press, 2000.[周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京:科学出版社, 2000.] [2] Tsytovich H. The mechanics of frozen ground[M]. Zhang Changqing, Zhu Yuanlin. translation. Beijing:Science Press, 1985.[Tsytovich H. 冻土力学[M]. 张长庆, 朱元林. 译. 北京:科学出版社, 1985.] [3] Andersland O, Ladanyi B. Frozen ground engineering[M]. New Jersey:John Wiley and Sons, Inc. Hoboken, 2004. [4] Ma Wei, Niu Fujun, Mu Yanhu. Basic research on the major permafrost projects in the Qinghai-Tibet Plateau[J]. Advances in Earth Science, 2012, 27(11):1185-1191.[马巍, 牛富俊, 穆彦虎. 青藏高原重大冻土工程的基础研究[J]. 地球科学进展, 2012, 27(11):1185-1191.] [5] Wang Shaoling, Zhao Xiufeng. The permafrost environment changes in the south section of Qinghai-Tibet Highway[J]. Journal of Glaciology and Geocryology, 1997, 19(3):41-49.[王绍令, 赵秀峰. 青藏公路南段岛状冻土区内冻土环境变化[J]. 冰川冻土, 1997, 19(3):41-49.] [6] Wu Qingbai, Zhu Yuanlin, Liu Yongzhi. Evaluation model of permafrost environment change under human engineering activities[J]. Science in China:Series D Earth Science, 2002, 32(2):141-148.[吴青柏, 朱元林, 刘永智. 人类工程活动下冻土环境变化评价模型[J]. 中国科学:D辑地球科学, 2002, 32(2):141-148.] [7] French H. The periglacial environment[M]. Third edition. Hoboken, New Jersey, America:John Wiley and Sons, 2007. [8] Qin Dahe. Assessment of environmental evolution in the western China[M]. Beijing:Science Press, 2002.[秦大河. 中国西部环境演变评估[M]. 北京:科学出版社, 2002.] [9] Wu Qingbai, Niu Fujun. Permafrost changes and engineering stability of Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2013, 58(2):115-130.[吴青柏, 牛富俊. 青藏高原多年冻土变化与工程稳定性[J]. 科学通报, 2013, 58(2):115-130.] [10] Wu Tonghua, Li Shuxun, Cheng Guodong, et al. Using ground-penetrating radar to detect permafrost degradation in the northern limit of permafrost on the Tibetan Plateau[J]. Cold Regions Science and Technology, 2005, 41(3):211-219. [11] Everdingen R. Geocryological terminology[J]. Canadian Journal of Earth Sciences, 1976, 13(6):862-867. [12] Harris S, French H, Heginbottom J, et al. Glossary of permafrost and related ground-ice terms[M]. Ottawa, Ontario, Canada:National Research Council of Canada, 1988. [13] Williams J. Ground water in permafrost regions-an annotated bibliography[M]. Washington:United States Government Printing office, 1965. [14] Washburn A. Periglacial processes and environments[M]. New York:St. Martin's Press, 1973. [15] Singh V, Singh P, Haritashya U. Encyclopedia of Snow, Ice and Glaciers[M]. Berlin, Germany:Springer Netherlands, 2011. [16] Wang Shuangjie, Li Zhulong, Zhang Jinzhao, et al. Highway construction technology on permafrost regions[M]. Beijing:China Communication Press, 2008.[汪双杰, 李祝龙, 章金钊, 等. 多年冻土地区公路修筑技术[M]. 北京:人民交通出版社, 2008] [17] Sun Zhizhong, Ma Wei, Liu Yongzhi, et al. Changes of thawed interlayer beneath embankment of the Qinghai-Tibet Highway in permafrost regions and its effect on embankment settlement deformation[J]. Journal of China and Foreign Highway, 2015, 15(6):14-18.[孙志忠, 马巍, 刘永智, 等. 青藏公路路基下融化夹层的变化及对路基沉降的影响[J]. 中外公路, 2015, 15(6):14-18.] [18] Wu Qingbai, Liu Yongzhi, Zhu Yuanlin. Thermal state of active layer under asphalt pavement of Qinghai-Tibet Highway[J]. Journal of Xi'an Highway University, 2001, 21(1):23-25.[吴青柏, 刘永智, 朱元林. 青藏公路沥青路面下活动层的热状态分析[J]. 西安公路交通大学学报, 2001, 21(1):23-25.] [19] Li Shuxun, Wu Ziwang. The change of thaw bulb under asphalt pavement in the region of permafrost on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 1997, 19(1):23-25.[李述训, 吴紫汪. 青藏高原多年冻土区沥青路面下融化盘形成变化特征[J]. 冰川冻土, 1997, 19(1):23-25.] [20] Chen Donggen, Wang Shuangjie, Chen Jianbing, et al. Study of the factors influencing the thickness of residual thawed interlayers and cooling effect of block-stone embankment[J]. Journal of Glaciology and Geocryology, 2014, 36(4):854-861.[陈冬根, 汪双杰, 陈建兵, 等. 融化夹层厚度影响因素分析与片块石路基降温效果研究[J]. 冰川冻土, 2014, 36(4):854-861.] [21] Jin Huijun, Zhao Lin, Wang Shaoling, et al. Degradation modes and ground temperature of permafrost along Qinghai-Tibet Highway[J]. Science in China:Series D Earth Science, 2006, 36(11):1009-1019.[金会军, 赵林, 王绍令, 等. 青藏公路沿线冻土的地温特征及退化方式[J]. 中国科学:D辑地球科学, 2006, 36(11):1009-1019.] [22] Wu Jichun, Sheng Yu, Wu Qingbai, et al. Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau[J]. Science in China:Series D Earth Science, 2009(11):1570-1578.[吴吉春, 盛煜, 吴青柏, 等. 青藏高原多年冻土退化过程及方式[J]. 中国科学:D辑地球科学, 2009(11):1570-1578.] [23] Ma Qinguo, Lai Yuanming, Wu Daoyong. Analysis of temperature field of high grade highway embankment in permafrost regions[J]. Journal of Central South University (Science and Technology), 2016, 47(7):2415-2423.[马勤国, 赖远明, 吴道勇. 多年冻土区高等级公路路基温度场研究[J]. 中南大学学报(自然科学版), 2016, 47(7):2415-2423.] [24] Wang Xiaojun, Jiang Ke, Wei Yongliang, et al. Numerical simulation analyses of artificial upper table and residual thawed layer for embankment of Qinghai-Tibet Railway in the permafrost region[J]. Hydrogeology and Engineering Geology, 2010, 37(5):50-56.[王小军, 姜珂, 魏永梁, 等. 青藏铁路多年冻土区路堤人为上限与融化夹层的数值模拟分析[J]. 水文地质工程地质, 2010, 37(5):50-56.] [25] Pan Weidong, Yu Shaoshui, Jia Haifeng, et al. Variation of the ground temperature field in permafrost regions along the Qinghai-Tibetan Railway[J]. Journal of Glaciology and Geocryology, 2002, 24(6):774-779.[潘卫东, 余绍水, 贾海峰, 等. 青藏铁路沿线多年冻土区地温场变化规律[J]. 冰川冻土, 2002, 24(6):774-779.] [26] Cheng Guodong. Construction of Qinghai-Tibet Railway by cooling the railroad[J]. Science and Technology Review, 2005, 23(1):4-8.[程国栋. 用冷却路基的原则修建青藏铁路[J]. 科技导报, 2005, 23(1):4-8.] [27] Ma Wei, Cheng Guodong, Wu Qingbai. Thoughts on solving frozen soil Engineering problems in the construction of Qinghai-Tibet Railroad[J]. Science and Technology Review, 2005, 23(1):23-28.[马巍, 程国栋, 吴青柏. 解决青藏铁路建设中冻土工程问题的思路与思考[J]. 科技导报, 2005, 23(1):23-28.] [28] Yu Hui, Wu Qingbai, Zhang Jianming. Dynamics assessment of permafrost under ordinary embankment of Qinghai-Tibet Railway[J]. Journal of Engineering Geology, 2009, 17(1):97-99.[于晖, 吴青柏, 张建明. 青藏铁路普通路基下冻土过程动态评价[J]. 工程地质学报, 2009, 17(1):97-99.] [29] Sun Zhizhong, Ma Wei, Wen Zhi, et al. Experimental and numerical analyses on traditional embankment of Qinghai-Tibet Railway[J]. Journal of The China Railway Society, 2010, 32(3):71-76.[孙志忠, 马巍, 温智, 等. 青藏铁路多年冻土区普通路基地温监测及其预测分析[J]. 铁道学报, 2010, 32(3):71-76.] [30] Mu Yanhu, Ma Wei, Niu Fujun, et al. Monitoring and analyzing the thermal conditions of traditional embankments along the Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2014, 36(4):953-961.[穆彦虎, 马巍, 牛富俊, 等. 青藏铁路多年冻土区普通路基热状况监测分析[J]. 冰川冻土, 2014, 36(4):953-961.] [31] Xu Xiaozu, Wang Jiacheng, Zhang Lixin. Physics of frozen soils[M]. Beijing:Science Press, 2010:39-62.[徐敩祖, 王家澄, 张立新. 冻土物理学[M]. 北京:科学出版社, 2010:39-62.] [32] USSR Academy of Sciences. Siberian Branch. Permafrost Institute. General geocryology[M]. Guo Dongxin, Liu Tieliang, Zhang Weixin, et al. translation. Beijing:Science Press, 1988.[苏联科学院西伯利亚分院冻土研究所. 普通冻土学[M]. 郭东信, 刘铁良, 张维信, 等. 译. 北京:科学出版社, 1988.] [33] Cheng Guodong, Wu Tonghua. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research, 2007, 112:F02S03. [34] Wu Qingbai, Zhang Tingjun. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research Atmospheres, 2010, 115:D09107. [35] Wu Qingbai, Zhang Tingjun, Liu Yong. Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010[J]. Cryosphere, 2012, 6(3):2465-81. [36] Xu Xiaoming, Wu Qingbai, Zhang Zhongqiong. Responses of active layer thickness on the Qinghai-Tibet Plateau to climate change[J]. Journal of Glaciology and Geocryology, 2017, 39(1):1-8.[徐小明, 吴青柏, 张中琼. 青藏高原多年冻土活动层厚度对气候变化的响应[J]. 冰川冻土, 2017, 39(1):1-8.] |