[1] Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocyology in China[M]. Beijing:Science Press, 2000.[周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京:科学出版社, 2000.] [2] Cheng Guodong, Wu Tonghua. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research-Earth Surface, 2007, 112(F2). DOI:10.1029/2006JF000631. [3] Ran Youhua, Li Xin, Cheng Guodong, et al. Distribution of permafrost in China:an overview of existing permafrost maps[J]. Permafrost and Periglacial Processes, 2012, 23(4):322-333. [4] Zhao Lin, Li Ren, Ding Yongjian, et al. Soil thermal regime in Qinghai-Tibet Plateau and its adjacent regions during 1977-2006[J]. Advances in Climate Change Research, 2011, 7(5):307-316.[赵林, 李韧, 丁永建, 等. 青藏高原1977-2006年土壤热状况究[J]. 气候变化研究进展, 2011, 7(5):307-316.] [5] Xu Guochang, Li Meifang. The temperature and East Asian circulation on the Qinghai-Tibet Plateau[J]. Plateau Meteorology, 1985, 4(2):185-189.[徐国昌, 李梅芳. 青藏高原温度与东亚环流[J]. 高原气象, 1985, 4(2):185-189] [6] Huang Zhongshu. A preliminary analysis of the correlation between the state of heat and ultra-long wave in the Qinghai-Xizang Plateau[J]. Geographical Research, 1986, 5(1):32-41.[黄忠恕. 青藏高原关系热状况与大气超长波的关系[J]. 地理研究, 1986, 5(1):32-41] [7] Li Ren, Ji Guoliang, Li Shuxun, et al. Soil heat condition discussion of Wudaoliang region[J]. Acita Energiae Solaris Sinica, 2005, 26(3):299-304.[李韧, 季国良, 李述训, 等. 五道梁地区土壤热状况的讨论[J]. 太阳能学报, 2005, 26(3):299-304.] [8] Li Ren, Zhao Lin, Wu Tonghua, et al. The study of Soil Thermal Condition of Wudaoliang in the Source Region of Yangtze[J]. Arid Land Geography, 2013, 36(2):277-284.[李韧, 赵林, 吴通华, 等. 长江源区五道梁的土壤热状况研究[J]. 干旱区地理, 2013, 36(2):277-284.] [9] Wu Qingbai, Zhang Tingjun. Recent permafrost warming on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research:Atmospheres, 2008, 113(D13). DOI:10.1029/2007JD009539. [10] Wu Qingbai, Hou Yandong, Yun Hanbo, et al. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China[J]. Global and Planetary Change, 2015, 124:149-155. [11] Liu Yang, Zhao Lin, Li Ren. Simulation of the soil water-thermal features within the active layer in Tanggula region, Tibetan Plateau, by using SHAW model[J]. Journal of Glaciology and Geocryology, 2013, 35(2):280-290.[刘杨, 赵林, 李韧. 基于SHAW模型的青藏高原唐古拉地区活动层土壤水热特征模拟[J]. 冰川冻土, 2013, 35(2):280-290.] [12] Hu Guojie, Zhao Lin, Li Ren, et al. The Water-thermal characteristics of frozen soil under freeze-thaw based on CoupModel[J]. Scientia Geographica Sinica, 2013, 33(3):356-362.[胡国杰, 赵林, 李韧, 等. 基于CoupModel模型的冻融土壤水热耦合模拟研究[J]. 地理科学, 2013, 33(3):356-362.] [13] Zhang Wei, Zhou Jian, Wang Genxu, et al. Monitoring and modeling the influence of snow cover and organic soil on the activelayer of permafrost on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013, 35(3):528-540.[张伟, 周剑, 王根绪, 等. 积雪和有机质土对青藏高原冻土活动层的影响[J]. 冰川冻土, 2013, 35(3):528-540.] [14] Guo Donglin, Yang Meixue. Simulation of soil temperature and moisture in seasonally frozen ground of central Tibetan Plateau by SHAW model[J]. Plateau Meteorology, 2010, 29(6):1369-1377.[郭东林, 杨梅学. SHAW模式对青藏高原中部季节冻土区土壤温、湿度的模拟[J]. 高原气象, 2010, 29(6):1369-1377.] [15] Zhou Jian, Wang Genxu, Li Xin, et al. Energy-water balance of meadow ecosystem in cold frozen soil areas[J]. Journal of Glaciology and Geocryology, 2008, 30(3):398-407.[周剑, 王根绪, 李新, 等. 高寒冻土地区草甸草地生态系统的能量-水分平衡分析[J]. 冰川冻土, 2008, 30(3):398-407.] [16] Zhao Lin, Li Ren, Ding Yongjian. Simulation on the water-thermal characteristics of the active layer in Tanggula range[J]. Journal of Glaciology and Geocryology, 2008, 30(6):930-937.[赵林, 李韧, 丁永建. 唐古拉地区活动层土壤水热特征的模拟研究[J]. 冰川冻土, 2008, 30(6):930-937.] [17] Yang Yong, Chen Rensheng, Ye Baisheng, et al. Heat and water transfer processes on the typical underlying surfaces of frozen soil in cold regions (I):model comparison[J]. Journal of Glaciology and Geocryology, 2013, 35(6):1545-1554.[阳勇, 陈仁升, 叶柏生, 等. 寒区典型下垫面冻土水热过程对比研究(I):模型对比[J]. 冰川冻土, 2013, 35(6):1545-1554.] [18] Yang Yong, Chen Rensheng, Ye Baisheng, et al. Heat and water transfer processes on the typical underlying surfaces of frozen soil in cold regions (Ⅱ):water and heat transfer[J]. Journal of Glaciology and Geocryology, 2013, 35(6):1555-1563.[阳勇, 陈仁升, 叶柏生, 等. 寒区典型下垫面冻土水热过程对比研究(Ⅱ):水热传输[J]. 冰川冻土, 2013, 35(6):1555-1563.] [19] Jafarov E E, Marchenko S S, Romanovsky V E. Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset[J]. The Cryosphere, 2012, 6(3):613-624. [20] Marchenko S S, Romanovsky V E. Effect of organic matter and soil water content on permafrost dynamics in the northern hemisphere:modeling approach[J]. Geophysical Research Abstracts, 2008, 10:EGU2008-A-04484. [21] Sazonova T S, Romanovsky V E. A model for regional-scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures[J]. Permafrost and Periglacial Processes, 2003, 14:125-139. [22] Luo Dongliang, Jin HuiJun, Marchenko S, et al. Distribution and changes of active layer thickness(ALT) and soil temperature(TTOP) in the source area of the Yellow River using the GIPL model[J]. Science China Earth Sciences, 2014, 57(8):1834-1845. [23] Shiklomanov N I, Anisimov O A, Zhang Tingjun, et al. Comparison of model-produced active layer fields:results for northern Alaska[J]. Journal of Geophysical Research:Earth Surface, 2007, 112(F2):F02S10. [24] O'Donnell J A, Harden J W, McGuire A D, et al. Exploring the sensitivity of soil carbon dynamics to climate change, fire disturbance and permafrost thaw in a black spruce ecosystem[J]. Biogeosciences, 2011, 8:1367-1382. [25] Treat C C, Wisser D, Marchenko S, et al. Modelling the effects of climate change and disturbance on permafrost stability in northern organic soils[J]. Mires and Peat, 2013, 12(2):1-17. [26] Jafarov E E, Romanovsky V E, Genet H, et al. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate[J]. Environmental Research Letters, 2013, 8(3):035030. [27] Alexiades V, Solomon A D. Mathematical modeling of melting and freezing processes[M]. Washington:Taylor & Francis Press, 1992. [28] Sergueev D, Tipenko G, Romanovsky V, et al. Mountain permafrost thickness evolution under influence of long-term climate fluctuations (results of numerical simulation)[C]//Proceedings of the 8th International Conference on Permafrost. 2003, 2:1017-1021. [29] Lovell C. Temperature effects on phase composition and strength of partially frozen soil[J]. Highway Research Board Bulletin, 1957, 168:74-95. [30] Nicolsky D J, Romanovsky V E, Tipenko GS. Using in-situ temperature measurements to estimate saturated soil thermal properties by solving a sequence of optimization problems[J]. The Cryosphere, 2007, 1(1):41-58. [31] Li Ren, Zhao Lin, Ding Yongjian, et al. A study on soil thermodynamic characteristics of active layer in northern Tibetan Plateau[J]. Chinese Journal of Geophysics, 2010, 53(5):1060-1072 [32] Lin Zhenyao,Wu Xiangding. Climatic regionalization of the Qinghai-Xizang Plateau[J]. Acta Geographica Sinica, 1981, 36(1):22-32.[林振耀, 吴祥定. 青藏高原气候区划[J]. 地理学报, 1981, 36(1):22-32.] [33] Li Ren, Zhao Lin, Ding Yongjian, et al. A study on soil thermodynamic characters of active layer in northern Tibetan Plateau[J]. Chinese Journal of Geophysics, 2010, 53(5):1060-1072.[李韧, 赵林, 丁永建, 等. 青藏高原北部活动层土壤热力特性的研究[J]. 地球物理学报, 2010, 53(5):1060-1072.] [34] Yue Guangyang, Zhao Lin, Wang Zhiwei, et al. Relationship bewteen alpine meadow root distribution and active layer temperature variation in permafrost areas[J]. Journal of Glaciology and Geocryology, 2015, 37(5):1381-1387.[岳广阳, 赵林, 王志伟, 等. 多年冻土区高寒草甸根系分布与活动层温度变化特征的关系[J]. 冰川冻土, 2015, 37(5):1381-1387.] [35] Wang Zhiwei, Wang Qian, Zhao Lin, et al. Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau[J]. Journal of Mountain Science, 2016, 13(6):1035-1046. [36] Jiao Yongliang, Li Ren, Zhao Lin, et al. Processes of soil thawing-freezing and features of soil moisture migration in the permafrost active layer[J]. Journal of Glaciology and Geocryology, 2014, 36(2):237-247.[焦永亮, 李韧, 赵林, 等. 多年冻土区活动层冻融状况及土壤水分运移特征[J]. 冰川冻土, 2014, 36(2):237-247.] [37] Zhang Lele, Zhao Lin, Li Ren, et al. Investigating the influence of soil moisture on albedo and soil thermodynamic parameters during the warm season in Tanggula range, Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2016, 38(2):351-358.[张乐乐, 赵林, 李韧, 等. 青藏高原唐古拉地区暖季土壤水分对地表反照率及其土壤热参数的影响[J]. 冰川冻土, 2016, 38(2):351-358.] [38] Zhao Lin, Wu Qingbai, Marchenko S S, et al. Thermal state of permafrost and active layer in central Asia during the International polar year[J]. Permafrost and Periglacial Processes, 2010, 21(2):198-207. [39] Gu Lianglei, Yao Jimin, Hu Zeyong, et al. Comparison of the surface energy budget between regions of seasonally frozen ground and permafrost on the Tibetan Plateau[J]. Atmospheric Research, 2015, 153:553-564. [40] Du Yizhen, Li Ren, Wu Tonghua, et al. Study of soil thermal conductivity:research status and advances[J]. Journal of Glaciology and Geocryology, 2015, 37(4):1067-1074.[杜宜臻, 李韧, 吴通华, 等. 土壤热导率的研究现状及其进展[J]. 冰川冻土, 2015, 37(4):1067-1074.] [41] Li Ren, Zhao Lin, Ding Yongjian, et al. Study on soil thermodynamic characteristics at different underlying surface in northern Tibetan Plateau[J]. Acta Energy Solaris Sinica, 2013, 34(6):1076-1084.[李韧, 赵林, 丁永建, 等. 青藏高原北部不同下垫面土壤热力特性研究[J]. 太阳能学报, 2013, 34(6):1076-1084.] [42] Shang Wen, Zhao Lin, Wu Xiaodong, et al. Soil organic matter fractions under different vegetation types in permafrost regions along the Qinghai-Tibet Highway, north of Kunlun Mountains, China[J]. Journal of Mountain Science, 2015, 12(4):1010-1024. [43] Qin Yanhui, Wu Tonghua, Li Ren, et al. Apply ERA-Interim land surface temperature data to model the permafrost distribution over the Qinghai-Xizang Plateau and its feasibility evaluation[J]. Journal of Glaciology and Geocryology, 2015, 37(6):1534-1543.[秦艳慧, 吴通华, 李韧, 等. ERA-Interim地表温度数据集在青藏高原冻土分布制图应用的适用性评估[J]. 冰川冻土, 2015, 37(6):1534-1543] [44] Qin Yanhui, Wu Tonghua, Li Ren, et al. Using ERA-Interim reanalysis dataset to assess the changes of ground surface freezing and thawing condition on the Qinghai-Tibet Plateau[J]. Environmental Earth Sciences, 2016, 75(9):1-13. |