[1] Guo Xuejun, Du Wei, Wang Xuan, et al. Degradation and
structure change of humic acids corresponding to water decline in Zoige
peatland, Qinghai-Tibet Plateau[J]. Science of the Total Environment, 2013,
445: 231-236.
[2]
Qi Dengchen, Li Guangyu. Status, causes and protection countermeasures of
wetland degradation in Maqu County in the upper Yellow River[J]. Wetland
Science, 2007, 5(4): 341-347. [戚登臣, 李广宇. 黄河上游玛曲湿地退化现状、成因及保护对策[J]. 湿地科学,
2007, 5(4): 341-347.]
[3]
Hu Yurong, Maskey S, Uhlenbrook S. Expected changes in future temperature
extremes and their elevation dependency over the Yellow River source region[J].
Hydrology and Earth System Sciences, 2013, 17(7): 2501-2514.
[4]
Chen Fahu, Bloemendal J, Zhang Pingzhong, et al. An 800 ky proxy record of
climate from lake sediments of the Zoige Basin, eastern Tibetan Plateau[J].
Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 151(4): 307-320.
[5]
Beniston M. Climatic change in mountain regions: a review of possible impacts[J].
Climatic Change, 2003, 59(1): 5-31.
[6]
Yu Kaifeng, Lehmkuhl F, Falk D. Quantifying land degradation in the Zoige
Basin, NE Tibetan Plateau using satellite remote sensing data[J]. Journal of
Mountain Science, 2017, 14(1): 77-93.
[7]
Gao Qingzhu, Li Yue, Wan Yunfan, et al. Dynamics of alpine grassland NPP and
its response to climate change in Northern Tibet[J]. Climatic Change, 2009,
97(3/4): 515-528.
[8]
Liu Qingguang. Dynamic degradation of the alpine-cold wetland and analysis of
driving forces in Maqu, China[J]. Nature Environment and Pollution Technology,
2016, 15(2): 457-466.
[9]
Oku Y, Ishikawa H, Haginoya S, et al. Recent trends in land surface temperature
on the Tibetan Plateau[J]. Journal of Climate, 2006, 19(12): 2995-3003.
[10] Rangwala I, Miller J R, Xu Ming. Warming in the
Tibetan Plateau: possible influences of the changes in surface water vapor[J].
Geophysical Research Letters, 2009, 36(6): 295-311.
[11]
Liu Xiaodong, Cheng Zhigang, Yan Libin, et al. Elevation dependency of recent
and future minimum surface air temperature trends in the Tibetan Plateau and
its surroundings[J]. Global and Planetary Change, 2009, 68(3): 164-174.
[12]
Yang Dawen, Li Chong, Hu Heping, et al. Analysis of water resources variability
in the Yellow River of China during the last half century using historical
data[J]. Water Resources Research, 2004, 40(6): 308-322.
[13]
Lan Yongchao, Zhu Yuntong, Liu Gensheng, et al. Study of the seasonal
characteristics and regional differences of climate change in source regions of
the Yellow River[J]. Journal of Glaciology and Geocryology, 2016, 38(3):
741-749. [蓝永超, 朱云通, 刘根生,
等. 黄河源区气候变化的季节特征与区域差异研究[J]. 冰川冻土,
2016, 38(3): 741-749.]
[14]
Li Zhiwei, Wang Zhaoyin, Zhang Chendi, et al. A study on the mechanism of
wetland degradation in Ruoergai swamp[J]. Advance in Water Science, 2014,
25(2): 172-180. [李志威, 王兆印, 张晨笛,
等. 若尔盖沼泽湿地的萎缩机制[J]. 水科学进展,
2014, 25(2): 172-180.]
[15]
Wang Xiaoyun, Yi Shuhua, Wu Qingbai, et al. The role of permafrost and soil
water in distribution of alpine grassland and its NDVI dynamics on the
Qinghai-Tibetan Plateau[J]. Global and Planetary Change, 2016, 147: 40-53.
[16]
Ao Yinhuan, Lü Shihua, Li Suosuo, et al. The energy budget and microclimate
over the upper Yellow River in summer fine days[J]. Journal of Glaciology and
Geocryology, 2008, 30(3): 426-432. [奥银焕, 吕世华,
李锁锁, 等. 黄河上游夏季晴天地表辐射和能量平衡及小气候特征[J]. 冰川冻土, 2008, 30(3): 426-432.]
[17]
Chen Boli, Luo Siqiong, Lü Shihua, et al. Land surface characteristics in soil
freezing and thawing process on the Tibetan Plateau based on Community Land
Model[J]. Journal of Glaciology and Geocryology, 2017, 39(4): 760-770. [陈渤黎,
罗斯琼, 吕世华, 等.
基于CLM模式的青藏高原土壤冻融过程陆面特征研究[J]. 冰川冻土,
2017, 39(4): 760-770.]
[18]
Yue Guangyang, Zhao Lin, Zhao Yonghua, et al. Research advances of grassland
ecosystem CO2 flux on Qinghai-Tibetan Plateau[J]. Journal of
Glaciology and Geocryology, 2010, 32(1): 166-174. [岳广阳,
赵林, 赵拥华, 等.
青藏高原草地生态系统碳通量研究进展[J]. 冰川冻土,
2010, 32(1): 166-174.]
[19]
Zhang Haihong, Li Lin, Zhou Bingrong, et al. Characteristics of CO2 flux over the alpine wetland in the Tibetan Plateau and its control factors[J].
Journal of Glaciology and Geocryology, 2017, 39(1): 54-60. [张海宏,
李林, 周秉荣, 等.
青藏高原高寒湿地CO2通量特征及影响因子分析[J].
冰川冻土, 2017, 39(1): 54-60.]
[20] Zhu Zhikun, Ma Yaoming, Hu Zeyong, et al. Net
ecosystem carbon dioxide exchange in alpine meadow of Nagchu region over
Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2015, 34(5): 1217-1223. [朱志鹍,
马耀明, 胡泽勇, 等.
青藏高原那曲高寒草甸生态系统CO2净交换及其影响因子[J].
高原气象, 2015, 34(5): 1217-1223.]
[21]
Xu Shixiao, Zhao Xinquan, Li Yingnian, et al. Characterizing CO2 fluxes for growing and non growing seasons in shrub ecosystem on the
Qinghai-Tibet Plateau[J]. Science in China: Series D Earth Sciences, 2005, 48(Suppl 1): 133-140. [徐世晓,
赵新全, 李英年, 等.
青藏高原高寒灌丛生长季和非生长季CO2通量分析[J].
中国科学: D辑 地球科学, 2004, 34(增刊2):
118-124.]
[22]
Wang Haibo, Ma Mingguo, Wang Xufeng, et al. Carbon flux variation
characteristics and its influencing factors in an alpine meadow ecosystem on
eastern Qinghai-Tibetan Plateau[J]. Journal of Arid Land Resources and
Environment, 2014, 28(6): 50-56. [王海波, 马明国,
王旭峰, 等. 青藏高原东缘高寒草甸生态系统碳通量变化特征及其影响因素[J]. 干旱区资源与环境, 2014, 28(6): 50-56.]
[23]
Xu Lingling, Zhang Xianzhou, Shi Peili, et al. Net ecosystem carbon dioxide
exchange of alpine meadow in the Tibetan Plateau from August to October[J].
Acta Ecologica Sinica, 2005, 25(8): 1948-1952. [徐玲玲, 张宪洲,
石培礼, 等. 青藏高原高寒草甸生态系统净二氧化碳交换量特征[J]. 生态学报, 2005, 25(8):
1948-1952.]
[24]
Zhao Qian, Liu Wenjie, Chen Shengyun, et al. Soil CO2 flux
characteristics in alpine meadow of permafrost regions in the upper reaches of
the Shule River, Qilianshan Mountains[J]. Journal of Glaciology and
Geocryology, 2014, 36(6): 1572-1581. [赵倩, 刘文杰,
陈生云, 等. 祁连山疏勒河上游多年冻土区高寒草甸土壤CO2通量特征[J]. 冰川冻土,
2014, 36(6): 1572-1581.]
[25]
Li Zhaoguo, Lü Shihua, Ao Yinhuan, et al. Analysis of micrometeorology and CO2 flux characteristics over lake Ngoring lakeside region in summer[J]. Progress
in Geography, 2012, 31(5): 602-608. [李照国, 吕世华,
奥银焕, 等. 鄂陵湖湖滨地区夏季近地层微气象特征与碳通量变化分析[J]. 地理科学进展, 2012, 31(5): 602-608.]
[26]
Chen Boli, Luo Siqiong, Lü Shihua, et al. Validation and comparison of the
simulation at Zoige Station during freezing and thawing with land surface model
CLM[J]. Climatic and Environmental Research, 2014, 19(5): 649-658. [陈渤黎,
罗斯琼, 吕世华, 等.
陆面模式CLM对若尔盖站冻融期模拟性能的检验与对比[J]. 气候与环境研究,
2014, 19(5): 649-658.]
[27]
Niu Shiquan, Li Junfeng, Yang Tingting, et al. The relationships of soil
microbial biomass, physicochemical factors and soil enzyme activities in Maqu
swamp wetland of Gannan Prefecture[J]. Journal of Glaciology and Geocryology,
2010, 32(5): 1022-1029. [牛世全, 李君锋,
杨婷婷, 等. 甘南玛曲沼泽湿地土壤微生物量、理化因子与土壤酶活的关系[J]. 冰川冻土, 2010, 32(5):
1022-1029.]
[28]
Wang Hui. Research on characteristics and driving mechanism of desertification
in Maqu alpine meadow region[D]. Lanzhou: Lanzhou University, 2007. [王辉.
玛曲高寒草甸沙化特征及沙化驱动机制研究[D]. 兰州:
兰州大学, 2007.]
[29]
Zeng Jian, Zhang Qiang. Mean characteristics of land surface key parameters in
semi-arid and arid regions of China in summer of 2008[J]. Plateau Meteorology,
2012, 31(6): 1539-1550. [曾剑, 张强.
2008年夏季中国干旱-半干旱区陆面主要物理参数的平均特征[J]. 高原气象,
2012, 31(6): 1539-1550.]
[30]
Li Yueqing, Liu Huizhi, Feng Jianwu, et al. Characteristics of energy transfer
and micrometeorology in the surface layer of the atmosphere in summer over the
alpine meadow of the Tibetan Plateau[J]. Chinese Journal of Atmospheric
Sciences, 2009, 33(5): 1003-1014. [李跃清, 刘辉志,
冯健武, 等. 高山草甸下垫面夏季近地层能量输送及微气象特征[J]. 大气科学, 2009, 33(5):
1003-1014.]
[31]
Luo Siqiong, Lü Shihua, Zhang Yu, et al. Simulation analysis on land surface
process of BJ site of central Tibetan Plateau using CoLM[J]. Plateau
Meteorology, 2008, 27(2): 259-271. [罗斯琼, 吕世华,
张宇, 等. CoLM模式对青藏高原中部BJ站陆面过程的数值模拟[J].
高原气象, 2008, 27(2): 259-271.]
[32]
Guo Donglin, Yang Meixue, Li Min, et al. Analysis on simulation of
characteristic of land surface energy flux in seasonal frozen soil region of central
Tibetan Plateau[J]. Plateau Meteorology, 2009, 28(5): 978-987. [郭东林,
杨梅学, 李敏, 等.
青藏高原中部季节冻土区地表能量通量的模拟分析[J]. 高原气象,
2009, 28(5): 978-987.]
[33]
Cess R D. Biosphere-albedo feedback and climate modeling[J]. Journal of the
Atmospheric Sciences, 1978, 35(9): 1765-1768.
[34]
Dickinson R E. Land surface processes and climate-surface albedos and energy
balance[J]. Advances in Geophysics, 1983, 25: 305-353.
[35]
Zhou Liming, Dickinson R E, Ogawa K, et al. Relations between
albedos and emissivities from
MODIS and ASTER data over North African Desert[J/OL]. Geophysical
Research Letters, 2003, 30(20) [2018-08-02]. https://doi.org/10.1029/2003GL018069.
[36]
Charney J G. Dynamics of deserts and drought in the Sahel[J]. Quarterly Journal
of the Royal Meteorological Society, 1975, 101(428): 193-202.
[37]
Fujimaki H, Shiozawa S, Inoue M. Effect of salty crust on soil albedo[J].
Agricultural and Forest Meteorology, 2003, 118(1): 125-135.
[38]
Liu Weidong, Baret F, Gu Xingfa, et al. Relating soil surface moisture to
reflectance[J]. Remote Sensing of Environment, 2002, 81(2): 238-246.
[39]
Gu Song, Otsuki K, Kamichika M. Albedo characteristics of Tottori sand dune[J].
Journal of Agricultural Meteorology, 2000, 56(3): 217-225.
[40]
Gu Song, Otsuki K, Kamichika M. Estimation of daily albedo on Tottori sand
surface[J]. Journal of Agricultural Meteorology, 2001, 57(1): 1-10.
[41]
Chuduo, Ma Weiqiang, Zhaxi Dunzhu. Land surface albedo in the north Tibetan
Plateau from ground observations and MODIS[J]. Remote Sensing Technology and
Application, 2015, 30(5): 908-916. [除多, 马伟强,
扎西顿珠. 藏北那曲地区地面与MODIS反演的地表反照率对比分析[J].
遥感技术与应用, 2015, 30(5): 908-916.]
[42]
Zhao Xingbing, Peng Bin, Qin Ningsheng, et al. Characteristics of energy
transfer and micrometeorology in surface layer in different areas of Tibetan
Plateau in summer[J]. Plateau and Mountain Meteorology Research, 2011, 31(1):
6-11. [赵兴炳, 彭斌, 秦宁生,
等. 青藏高原不同地区夏季近地层能量输送与微气象特征比较分析[J]. 高原山地气象研究,
2011, 31(1): 6-11.]
[43]
Tanaka K, Ishikawa H, Hayashi T, et al. Surface energy budget at Amdo on the
Tibetan Plateau using GAME/Tibet IOP98 data[J]. Journal of the Meteorological
Society of Japan, 2001, 79(2): 181-189.
[44]
Yang Kun, Wang Jiemin. A temperature prediction-correction method for
estimating surface soil heat flux from soil temperature and moisture data[J].
Science in China: Series D Earth
Sciences, 2008, 51(5): 721-729. [阳坤, 王介民.
一种基于土壤温湿资料计算地表土壤热通量的温度预报校正法[J]. 中国科学:
D辑
地球科学, 2008, 38(2): 243-250.]
[45]
Ma Weiqiang, Ma Yaoming, Li Maoshan, et al. Seasonal variation on land surface
energy budget and energy balance components in the northern Tibetan Plateau[J].
Journal of Glaciology and Geocryology, 2005, 27(5): 673-679. [马伟强,
马耀明, 李茂善, 等.
藏北高原地区地表辐射出支和能量平衡的季节变化[J]. 冰川冻土,
2005, 27(5): 673-679.]
[46]
Wu Xiaoming, Ma Weiqiang, Ma Yaoming. Observation and simulation analyses on
characteristics of land surface heat flux in northern Qinghai-Xizang Plateau in
summer[J]. Plateau Meteorology, 2013, 32(5): 1246-1252. [吴晓鸣,
马伟强, 马耀明. 夏季藏北高原地表热通量特征观测与模拟[J]. 高原气象, 2013, 32(5):
1246-1252.]
[47]
Wang Shaoying, Zhang Yu, Lü Shihua, et al. Seasonal variation characteristics
of radiation and energy budget in alpine meadow ecosystem in Maqu grassland[J].
Plateau Meteorology, 2012, 31(3): 605-614. [王少影, 张宇,
吕世华, 等. 玛曲高寒草甸地表辐射与能量收支的季节变化[J]. 高原气象, 2012, 31(3): 605-614.]
[48]
Gu Song, Tang Yanhong, Cui Xiaoyong, et al. Energy exchange between the
atmosphere and a meadow ecosystem on the Qinghai-Tibetan Plateau[J].
Agricultural and Forest Meteorology, 2005, 129(3): 175-185.
[49]
Luo Qi, Wen Jun, Wang Xin, et al. Analysis of the diurnal characteristics of
water and heat & CO2 exchanges at the alpine wetland in the
source region of the Yellow River[J]. Plateau Meteorology, 2017, 36(3):
667-674. [罗琪, 文军, 王欣,
等. 黄河源高寒湿地-大气间水热和碳交换通量日变化特征的观测分析[J]. 高原气象, 2017, 36(3): 667-674.]
[50] Raja P, Bhattacharya B K, Singh N, et al. Surface
energy balance and its closure in arid grassland ecosystem: a case study over
Thar Desert[J]. Journal of Agrometeorology, 2013, 15(Spl I): 94-99.
[51]
Barr A G, Morgenstern K, Black T A, et al. Surface energy balance closure by
the eddy-covariance method above three boreal forest stands and implications
for the measurement of the CO2 flux[J]. Agricultural and Forest
Meteorology, 2006, 140(1): 322-337.
[52]
Leuning R, Gorsel E V, Massman W J, et al. Reflections on the surface energy
imbalance problem[J]. Agricultural and Forest Meteorology, 2012, 156: 65-74.
[53]
Halldin S, Lindroth A. Errors in net radiometry: comparison and evaluation of
six radiometer designs[J]. Journal of Atmospheric and Oceanic Technology, 1992,
9(6): 762-783.
[54]
Meyers T P, Hollinger S E. An assessment of storage terms in the surface energy
balance of maize and soybean[J]. Agricultural and Forest Meteorology, 2004,
125(1): 105-115.
[55]
Katul G G, Finnigan J, Poggi D, et al. The
influence of hilly terrain on canopy-atmosphere carbon dioxide exchange[J].
Boundary-Layer Meteorology, 2006, 118(1): 189-216.
[56]
Foken T. The energy balance closure problem: an overview[J]. Ecological
Applications, 2008, 18(6): 1351-1367.
[57]
Finnigan J J, Clement R, Malhi Y, et al. A re-evaluation of long-term
flux measurement techniques Part I: averaging and coordinate rotation[J].
Boundary-Layer Meteorology, 2003, 107(1): 1-48.
[58]
Moore C J. Frequency response corrections for eddy correlation systems[J].
Boundary-Layer Meteorology, 1986, 37(1/2): 17-35.
[59]
Finnigan J J. A re-evaluation of long-term flux measurement
techniques Part II: coordinate systems[J]. Boundary-Layer
Meteorology, 2004, 113(1): 1-41.
[60] Zhang Fawei, Liu Anhua, Li Yingnian, et al. CO2 flux in alpine wetland ecosystem on the Qinghai-Tibetan Plateau[J]. Acta Ecologica
Sinica, 2008, 28(2): 453-462. [张法伟, 刘安花,
李英年, 等. 青藏高原高寒湿地生态系统CO2通量[J].
生态学报, 2008, 28(2): 453-462.]
[61]
Wang Jie, Ye Baisheng, Zhang Shiqiang, et al. Changing features of CO2 fluxes in alpine meadow in the upper reaches of Shule River, Qilianshan[J].
Journal of Glaciology and Geocryology, 2011, 33(3): 646-653. [王杰,
叶柏生, 张世强, 等.
祁连山疏勒河上游高寒草甸CO2通量变化特征[J].
冰川冻土, 2011, 33(3): 646-653.]
[62]
Shi Peili, Sun Xiaomin, Xu Lingling, et al. Net ecosystem CO2 exchange and controlling factors in a steppe: Kobresia meadow on the Tibetan
Plateau[J]. Science in China: Series D
Earth Sciences, 2006, 49(Suppl 2): 207-218. [石培礼,
孙晓敏, 徐玲玲, 等.
西藏高原草原化嵩草草甸生态系统CO2净交换及其影响因子[J].
中国科学: D辑 地球科学, 2006, 36(增刊1):
194-203.]
[63]
Hu Yinqiao, Zuo Hongchao. The influence of convergence movement on turbulent
transportation in the atmospheric boundary layer[J]. Advances in Atmospheric
Sciences, 2003, 20(5): 794-798.
|