[1] Zou
Defu, Zhao Lin, Sheng Yu, et al. A new map of the
permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017,
11(6): 2527-2542.
[2] Cheng
Guodong, Zhao Lin. The problem associated with permafrost in the development of
the Qinghai-Xizang Plateau[J]. Quaternary Sciences, 2000, 20(6): 521-531. [程国栋, 赵林. 青藏高原开发中的冻土问题[J]. 第四纪研究, 2000,
20(6): 521-531.]
[3] Wu Qingbai, Liu Yongzhi, Tong Changjiang, et al.
Interaction between soil environment and engineering environment in cold regions[J].
Journal of Engineering Geology, 2000, 8(3): 281-287. [吴青柏, 刘永智, 童长江, 等. 寒区冻土环境与工程环境间的相互作用[J]. 工程地质学报, 2000, 8(3): 281-287.]
[4] Zhou
Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing:
Science Press, 2000: 37-41. [周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社,
2000: 37-41.]
[5] Zhao
Lin. The freezing-thawing process of active layer and changes of seasonally
frozen ground on the Tibetan Plateau[D]. Lanzhou: Cold and Arid Regions
Environmental and Engineering Research Institute, Chinese Academy of Sciences,
2004. [赵林. 青藏高原多年冻土活动层的冻融过程以及季节冻土的变化[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2004.]
[6] Wang
Zhijian. Permafrost engineering in Qinghai-Tibet Railway construction[J].
Chinese Railways, 2002(12): 31-37. [王志坚. 青藏铁路建设中的冻土工程问题[J]. 中国铁路, 2002(12): 31-37.]
[7] Liu
Guangsheng, Wang Genxu, Hu Hongchang, et al. Influence of vegetation coverage
on water and heat processes of the active layer in permafrost region of the
Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2009, 31(1): 89-95. [刘光生, 王根绪, 胡宏昌, 等. 青藏高原多年冻土区植被盖度变化对活动层水热过程的影响[J]. 冰川冻土, 2009, 31(1): 89-95.]
[8] Boorman L.
Climate change 1995: impacts, adaptations and mitigation of climate change: scientific-technical analysis:
Contribution of working group II to the second assessment report of the
intergovernmental panel on climate change[M]. Cambridge, UK: Cambridge
University Press, 1996.
[9] Wang
Shaoling. Studies on permafrost degeneration on Qinghai-Xizang Plateau[J].
Advances in Earth Science, 1997, 12(2): 164-167. [王绍令. 青藏高原冻土退化研究[J]. 地球科学进展, 1997, 12(2): 164-167.]
[10] Xu Xiaoming, Wu Qingbai,
Zhang Zhongqiong. Responses of active layer thickness on the Qinghai-Tibet
Plateau to climate change[J]. Journal of Glaciology and Geocryology, 2017,
9(1): 1-8. [徐晓明, 吴青柏, 张中琼. 青藏高原多年冻土活动层厚度对气候变化的响应[J]. 冰川冻土,
2017, 9(1): 1-8.]
[11] Liu
Yaojun, Yue Zurun, Li Zhong. Settlement deformation and ground temperature
monitoring of subgrade in plateau permafrost region of Qinghai-Tibet
Railway[J]. Railway Standard Design, 2003, 12(4): 26-27. [刘尧军, 岳祖润, 李忠. 青藏铁路高原冻土区段路基沉降变形和地温监测[J]. 铁道标准设计, 2003, 12(4): 26-27.]
[12] Wang
Xiaofang. Selection of subgrade deformation observation method[J]. Railway Engineering, 2004(4): 41-43. [王晓放. 路基变形观测方法的选用[J]. 铁道建筑, 2004(4): 41-43.]
[13] Gabrile
A K, Goldstein R M, Zebker H A. Mapping small elevation changes over large
areas: differential radar interferometry[J]. Journal of Geophysical Research,
1989, 94(B7): 9183-9191.
[14] Massonnet
D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake
mapped by radar interferometry[J]. Nature, 1993, 364(6433): 138-142.
[15] Li
Zhen, Li Xinwu, Liu Yongzhi, et al. Detecting the displacement field of thaw
settlement by means of SAR interferometry[J]. Journal of Glaciology and
Geocryology, 2004, 26(4): 389-396. [李震, 李新武, 刘永智, 等. 差分干涉SAR冻土形变检测方法研究[J]. 冰川冻土,
2004, 26(4): 389-396.]
[16] Xie
Chou, Li Zhen, Li Xinwu. A study of deformation in permafrost regions of
Qinghai-Tibet Plateau based on ALOS/PALSAR D-InSAR interferometry[J]. Remote
Sensing for Land and Resources, 2008, 20(3): 15-19. [谢酬, 李震, 李新武. 基于PALSAR数据的青藏高原冻土形变检测方法研究[J]. 国土资源遥感, 2008, 20(3): 15-19.]
[17] Zebker H A, Rosen P A,
Hensley S. Atmospheric effects in interferometric synthetic aperture radar
surface deformation and topographic maps[J]. Journal of Geophysical Research:
Solid Earth, 1997, 102(B4): 7547-7563.
[18] Berardino
P, Fornaroe G, Lanari G, et al. A new algorithm for surface deformation
monitoring based on small baseline differential SAR interferograms[J]. IEEE
Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
[19] Ferretti A, Prati C,
Rocca F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on
Geoscience and Remote Sensing, 2001, 39(1): 8-20.
[20] Hooper A, Zebker H A,
Segall P, et al. A new method for measuring deformation on volcanoes and other
natural terrains using InSAR persistent scatterers[J/OL]. Geophysical Research
Letters, 2004, 31(23) [2018-04-21]. https://doi.org/10.1029/2004GL021737.
[21] Schaefer K, Liu Lin,
Parsekian A, et al. Remotely sensed active layer thickness (ReSALT) at Barrow,
Alaska using interferometric synthetic aperture radar[J]. Remote Sensing, 2015,
7(4): 3735-3759.
[22] Liu Lin, Schaefer K, Zhang
Tingjun, et al. Estimating 1992-2000 average active layer thickness on the
Alaskan north slope from remotely sensed surface subsidence[J/OL]. Geophysical
Research, 2012, 117(F1) [2018-04-21]. https://doi.org/10.1029/2011jf002041.
[23] Li Shanshan, Li Zhiwei, Hu
Jun, et al. Investigation of the seasonal oscillation of the permafrost over
Qinghai-Tibet Plateau with SBAS-InSAR algorithm[J]. Chinese Journal of
Geographysics, 2013, 56(5): 1476-1486. [李珊珊, 李志伟, 胡俊, 等. SBAS-InSAR技术监测青藏高原季节性冻土形变[J]. 地球物理学报, 2013, 56(5): 1476-1486.]
[24] Daout
S, Doin M-P, Peltzer G, et al. Large-scale InSAR monitoring of permafrost
freeze-thaw cycles on the Tibetan Plateau[J]. Geophysical Research
Letters, 2017, 44(2): 901-909.
[25] Xie
Chou, Li Zhen, Xu Ji, et al. Analysis of deformation over permafrost regions of
Qinghai-Tibet Plateau based on permanent scatterers[J]. International Journal
of Remote Sensing, 2010, 31(8): 1995-2008.
[26] Chen
Fulong, Lin Hui, Li Zhen, et al. Interaction between permafrost and
infrastructure along the Qinghai-Tibet Railway detected via jointly analysis of
C- and L-band small baseline SAR interferometry[J]. Remote Sensing of
Environment, 2012, 123(8): 532-540.
[27] Chen Fulong,
Lin Hui, Zhou Wei, et al. Surface deformation detected by ALOS PALSAR small
baseline SAR interferometry over permafrost environment of Beiluhe section,
Tibet Plateau, China[J]. Remote Sensing of Environment, 2013, 138(2): 10-18.
[28] Li Zhen, Tang Panpan, Zhou
Jianming, et al. Permafrost environment monitoring on the Qinghai-Tibet Plateau
using time series ASAR images[J]. International Journal of Digital Earth, 2014,
8(10): 840-860.
[29] Jia
Yuanyuan, Kim Jin-Woo, Shum C K, et al. Characterization of
active layer thickening rate over the northern Qinghai-Tibetan Plateau
permafrost region using ALOS interferometric synthetic aperture radar data,
2007-2009[J/OL]. Remote Sensing, 2017, 9(1) [2019-05-24]. https://doi.org/10.3390/rs9010084.
[30] Yagüe-Martinez N,
Prats-Iraola P, González F R, et al.
Interferometric processing of sentinel-1 TOPS data[J]. IEEE Transactions on
Geoscience and Remote Sensing, 2016, 54(4): 2220-2234.
[31] Shirzaei
M, Bürgmann R, Fielding E J. Applicability of Sentinel-1 Terrain Observation
by Progressive Scans multitemporal interferometry for monitoring slow ground
motions in the San Francisco Bay Area[J]. Geophysical Research
Letters, 2017, 44(6): 2733-2742.
[32] Mackay
J R. The growth of pingos, western arctic coast, Canada[J]. Canadian Journal of
Earth Sciences, 1973, 10(6): 979-1004.
[33] Li
Shanshan. The study of using SBAS to monitor the motion of frozen soil along
Qinghai-Tibet Railway[D]. Changsha: Central South University, 2012. [李珊珊. 基于SBAS技术的青藏铁路区冻土形变监测研究[D]. 长沙: 中南大学, 2012.]
[34] Lanari
R, Mora O, Mallorqui J J. A small-baseline approach for
investigating deformations on full-resolution differential SAR
interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,
42(7): 1377-1386.
[35] Liao
Mingsheng, Wang Teng. Technology and application of time series InSAR[M].
Beijing: Science Press, 2014: 83-86. [廖明生, 王腾. 时间序列InSAR技术与应用[M]. 北京: 科学出版社, 2014:
83-86.]
[36] Pepe A, Lanari R. On the extension of the minimum cost
flow algorithm for phase unwrapping of multitemporal differential SAR
interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2374-2383.
[37] Goldstein R M, Werner C L. Radar
interferogram filtering for geophysical applications[J]. Geophysical Research
Letter, 1998, 25(21): 4035-4038.
[38] Nolan M, Fatland D R, Hinzman L. DInSAR
measurement of soil moisture[J]. IEEE Transactions on
Geoscience and Remote Sensing, 2003, 41(12): 2802-2813.
[39] Li Ren, Zhao Lin, Ding Yongjian, et al.
The condition of atmosphere quality over Wudaoliang[J]. Journal of Mountain Science, 2009, 27(4): 411-417. [李韧, 赵林, 丁永建, 等. 长江源区五道梁的大气质量状况[J]. 山地学报, 2009, 27(4):
411-417.]
[40] Zhao
Rong, Li Zhiwei, Feng Guangcai, et al. Monitoring surface deformation over
permafrost with an improved SBAS-InSAR algorithm: with emphasis on climatic
factors modeling[J]. Remote Sensing of Environment, 2016, 184: 276-287.
[41] ADDIN
CNKISM.UserStyleYang Meixue, Yao Tandong, Nozomu
H, et al. The diurnal freeze-thaw cycles of the surface soils on the Tibetan
Plateau[J]. Chinese Science Bulletin, 2006, 51(16): 1974-1976. [杨梅学, 姚檀栋,
Nozomu H, 等. 青藏高原表层土壤的日冻融循环[J]. 科学通报, 2006, 51(16): 1974-1976.]
[42] Tian
Liming, Zhao Lin, Wu Xiaodong, et al. Vertical patterns and controls of soil
nutrients in alpine grassland: implications for nutrient uptake[J]. Science of
the Total Environment, 2017, 607/608: 855-864.
[43] Qin
Dahe, Yao Tandong, Ding Yongjian, et al. Glossary of cryosphere science[M].
Beijing: China Meteorological Press, 2014:
127-128. [秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学辞典[M]. 北京: 气象出版社, 2014: 127-128.]
[44] Wang Liyan, Xiao Yi, Jiang
Ling, et al. Assessment and analysis of the freeze-thaw erosion sensitivity on
the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2017, 39(1):
61-69. [王莉雁, 肖燚, 江凌, 等. 青藏高原冻融侵蚀敏感性评价与分析[J]. 冰川冻土, 2017, 39(1): 61-69.]
[45] Yao Tandong, Piao Shilong, Shen Miaogen, et al.
Chained impacts on modern environment of interaction between westerlies and Indian
monsoon on Tibetan Plateau[J]. Bulletin of Chinese Academy of Sciences, 2017,
32(9): 976-984. [姚檀栋, 朴世龙, 沈妙根, 等. 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应[J]. 中国科学院院刊, 2017, 32(9): 976-984.]
[46] Wang
Chao, Zhang Zhengjia, Zhang Hong, et al. Seasonal deformation
features on Qinghai-Tibet Railway observed using time-series InSAR technique
with high-resolution TerraSAR-X images[J/OL]. Remote Sensing
Letters, 2016, 8(1) [2018-04-21]. https://doi.org/10.1080/2150704x.2016.1225170.
[47] Wang Zhijun, Li Shusun. Detection of winter frost
heaving of the active layer of Arctic permafrost using SAR differential
interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing,
2007, 42(7): 1946-1948.
[48] Short N, Brisco B, Couture N, et al. A comparison of
TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost
environments, case study from Herschel Island, Canada[J]. Remote Sensing of
Environment, 2011, 115(12): 3491-3506. |