[1] Yao Tandong, Thompson L, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2 (9):663-667. [2] Mölg T, Maussion F, Yang Wei, et al. The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier[J]. Cryosphere, 2012, 6 (6):1445-1461. [3] Shangguan Donghui, Liu Shiyin, Ding Yongjian, et al. Glacier changes in the Koshi River basin, central Himalaya, from 1976 to 2009, derived from remote-sensing imagery[J]. Annals of Glaciology, 2014, 55 (66):61-68. [4] Pellicciotti F, Stephan C, Miles E, et al. Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from 1974 to 1999[J]. Journal of Glaciology, 2015, 61 (226):373-386. [5] Scherler D, Bookhagen B, Strecker M R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover[J]. Nature Geoscience, 2011, 4 (3):156-159. [6] Yang Wei, Yao Tandong, Guo Xiaofeng, et al. Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity[J]. Journal of Geophysical Research Atmospheres, 2013, 118 (17):9579-9594. [7] Yang Wei, Guo Xiaofeng, Yao Tandong, et al. Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations[J]. Climate Dynamics, 2016, 47 (3/4):805-815. [8] Xin Huijuan, He Yuanqing, Niu Hewen, et al. The features of climate variation and glacier response in Mt. Yulong, Southeastern Tibetan Plateau[J]. Advances in Earth Science, 2013, 28 (11):1257-1268.[辛惠娟, 何元庆, 张涛, 等. 青藏高原东南缘丽江玉龙雪山气候变化特征及其对冰川变化的影响[J]. 地球科学进展, 2013, 28 (11):1257-1268.] [9] Duan J, Wang L, Li L, et al. Tree-ring-inferred glacier mass balance variation in southeastern Tibetan Plateau and its linkage with climate variability[J]. Climate of the Past Discussions, 2013, 9 (4):3663-3680. [10] Zhu Haifeng, Xu Peng, Shao Xuemei, et al. Little ice age glacier fluctuations reconstructed for the southeastern Tibetan Plateau using tree rings[J]. Quaternary International, 2013, 283 (2):134-138. [11] Xu Peng, Zhu Haifeng, Shao Xuemei, et al. Tree ring-dated fluctuation history of Midui Glacier since the little ice age in the southeastern Tibetan plateau[J]. Science in China:Series D Earth Sciences, 2012, 55 (4):521-529. [12] Huang Lei, Zhu Liping, Wang Junbo, et al. Glacial activity reflected in a continuous lacustrine record since the early Holocene from the proglacial Laigu Lake on the southeastern Tibetan Plateau[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2016, 456:37-45. [13] Zhang Jifeng, Xu Baiqing, Turner F, et al. Long-term glacier melt fluctuations over the past 2500 yr in monsoonal High Asia revealed by radiocarbon-dated lacustrine pollen concentrates[J]. Geology, 2017, 45 (4):359-362. [14] Su Fengge, Zhang Leilei, Ou T, et al. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau[J]. Global and Planetary Change, 2016, 136:82-95. [15] Cui Peng, Chen Rong, Xiang Lingzhi, et al. Risk analysis of mountain Hazaeds in Tibetan Plateau under global warming[J]. Climate Change Research, 2014, 10 (2):103-109.[崔鹏, 陈容, 向灵芝, 等. 气候变暖背景下青藏高原山地灾害及其风险分析[J]. 气候变化研究进展, 2014, 10 (2):103-109.] [16] Cui Peng, Jia Yang, Su Fenghuan, et al. Risk assessment and disaster reduction strategies for mountainous and meteorological hazards in Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60 (9):3067-3077.[崔鹏, 贾洋, 苏凤环, 等. 青藏高原自然灾害发育现状与未来关注的科学问题[J]. 科学通报, 2017, 60 (9):3067-3077.] [17] Immerzeel W, van Beek L, Bierkens M. Climate change will affect the Asian water towers[J]. Science, 2010, 328 (5984):1382-1385. [18] Fyffe C L, Reid T D, Brock B W, et al. A distributed energy-balance melt model of an alpine debris-covered glacier[J]. Journal of Glaciology, 2014, 60 (221):587-602. [19] Mattson L E, Gardner J S, Young G J. Ablation on debris covered glaciers:an example from the Rakhiot Glacier, Punjab, Himalaya[C]//Proceedings of the Kathmandu Symposium, November, 1992, IAHS, Publ. No.218, 1993. [20] Pu Jianchen, Yao Tangdong, Duan Keqin. An observation on surface ablation on the Yangbark Glacier in the Muztag Ata, China[J]. Journal of Glaciology and Geocryology, 2003, 25 (6):680-684.[蒲健辰, 姚檀栋, 段克勤. 慕士塔格峰洋布拉克冰川消融的观测分析[J]. 冰川冻土, 2003, 25 (6):680-684.] [21] Liu Weigang, Xiao Cunde, Liu Jingshi, et al. Analyzing the ablation rates of the Rongbuk Glacier on the Mt. Qomolangma, Central Himalayas[J]. Journal of Glaciology and Geocryology, 2013, 35 (4):814-823.[刘伟刚, 效存德, 刘景时, 等. 喜马拉雅山珠穆朗玛峰北坡绒布冰川消融速率特征分析[J]. 冰川冻土, 2013, 35 (4):814-823.] [22] Zhang Yong, Liu Shiyin. Research progress on debris thickness estimation and its effect on debris-covered glaciers in western China[J]. Acta Geographica Sinica, 2017, 72 (9):1606-1620.[张勇, 刘时银. 中国冰川区表碛厚度估算及其影响研究进展[J]. 地理学报, 2017, 72 (9):1606-1620.] [23] Han Haidong, Ding Yongjing, Liu Shiyin. A simple model to estimate ice ablation under a thick debris layer[J]. Journal of Glaciology, 2006, 52 (179):528-536. [24] Reid T D, Brock B W. An energy-balance model for debris-covered glaciers including heat conduction through the debris layer[J]. Journal of Glaciology, 2010, 56 (199):903-916. [25] Lejeune Y, Bertrand J M, Wagnon P, et al. A physically based model of the year-round surface energy and mass balance of debris-covered glaciers[J]. Journal of Glaciology, 2013, 59 (214):327-344. [26] Rounce D R, Quincey D J, McKinney D C. Debris-covered glacier energy balance model for Imja-Lhotse Shar Glacier in the Everest region of Nepal[J]. Cryosphere, 2015, 9 (6):2295-2310. [27] Shaw T E, Brock B W, Fyffe C L, et al. Air temperature distribution and energy-balance modelling of a debris-covered glacier[J]. Journal of Glaciology, 2016, 62 (231):185-198. [28] Yang Wei, Yao Tandong, Zhu Meilin, et al. Comparison of the meteorology and surface energy fluxes of debris-free and debris-covered glaciers in the southeastern Tibetan Plateau[J]. Journal of Glaciology, 2017, 63 (242):1090-1104. [29] Outcalt S I, Nelson F E, Hinkel K M. The zero-curtain effect:heat and mass-transfer across an isothermal region in freezing soil[J]. Water Resources Research, 1990, 26 (7):1509-1516. [30] Mutter E Z, Phillips M. Active layer characteristics at ten borehole sites in alpine permafrost terrain, Switzerland[J]. Permafrost and Periglacial Processes, 2012, 23 (2):138-151. [31] Luo Dongliang, Jin Huijun, Lü Lanzhi, et al. Spatiotemporal characteristics of freezing and thawing of the active layer in the source areas of the Yellow River (SAYR)[J]. Chinese Science Bulletin, 2014, 59 (24):3034-3045.[罗栋梁, 金会军, 吕兰芝, 等. 黄河源区多年冻土活动层和季节冻土冻融过程时空特征[J]. 科学通报, 2014, 59 (14):1327-1336.] [32] Li Jing, Sheng Yu, Wu Jichun, et al. Spatial and temporal variations of the superficial hydrothermal characteristics in permafrost regions in the source areas of the Datong River, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36 (4):994-1001.[李静, 盛煜, 吴吉春, 等. 祁连山大通河源多年冻土区浅层土壤水热时空变化特征[J]. 冰川冻土, 2014, 36 (4):994-1001.] [33] Kellerer-Pirklbauer A. Solifluction rates and environmental controls at local and regional scales in central Austria[J]. Norsk Geografisk Tidsskrift Norwegian Journal of Geography, 2018, 72 (1):37-56. [34] Hu Xiaoying, Sheng Yu, Wu Jichun, et al. Hydrothermal processes of thermokarst ponds in the Tibetan Plateau and its thermal impact on the underlying permafrost[J]. Journal of Lake Sciences, 2018, 30 (3):825-835.[胡晓莹, 盛煜, 吴吉春, 等. 青藏高原热融湖塘的水热过程及其对下伏多年冻土的热影响[J]. 湖泊科学, 2018, 30 (3):825-835.] [35] Pellet C, Hauck C. Monitoring soil moisture from middle to high elevation in Switzerland:set-up and first results from the SOMOMOUNT network[J]. Hydrology and Earth System Sciences, 2017, 21 (6):3199-3220. [36] Gao Tanguang, Zhang Tingjun, Guo Hong, et al. Impacts of the active layer on runoff in an upland permafrost basin, northern Tibetan Plateau[J]. Plos One, 2018, 13 (2):e0192591. [37] Schmid M O, Gubler S, Fiddes J, et al. Inferring snowpack ripening and melt-out from distributed measurements of near-surface ground temperatures[J]. Cryosphere, 2012, 6 (5):1127-1139. [38] Wirz V, Gruber S, Purves R S, et al. Short-term velocity variations at three rock glaciers and their relationship with meteorological conditions[J]. Earth Surface Dynamics, 2016, 4 (1):103-123. [39] Sakai A, Nakawo M, Fujita K. Distribution characteristics and energy balance of ice cliffs on debris-covered glaciers, Nepal Himalaya[J]. Arctic Antarctic & Alpine Research, 2002, 34 (1):12-19. [40] Zhang Hongbo, Zhang Fan, Zhang Guoqing, et al. Evaluation of cloud effects on air temperature estimation using MODIS LST based on ground measurements over the Tibetan Plateau[J]. Atmospheric Chemistry and Physics, 2016, 16 (21):13681-13696. [41] Sun Jun, Hu Zeyong, Xun Xueyi, et al. Albedo characteristics in different underlying surfaces in mid-and upper-reaches of Heihe and its impact factor analysis[J]. Plateau Meteorology, 2011, 30 (3):607-613.[孙俊, 胡泽勇, 苟学义, 等. 黑河中上游不同下垫面反照率特诊及其影响因子分析[J]. 高原气象, 2011, 30 (3):607-613.] [42] Gubler S, Fiddes J, Keller M, et al. Scale-dependent measurement and analysis of ground surface temperature variability in alpine terrain[J]. Cryosphere, 2011, 5 (2):431-443. [43] Romanovsky V E, Osterkamp T E. Thawing of the active layer on the coastal plain of the Alaskan Arctic[J]. Permafrost and Periglacial Processes, 1997, 8 (1):1-22. [44] Cao Wei, Sheng Yu, Wu Jichun, et al. Seasonal variation of soil hydrological processes of active layer in source region of the Yellow River[J]. Advances in Water Science, 2018, 29 (1):1-10.[曹伟, 盛煜, 吴吉春, 等. 黄河源区多年冻土活动层土壤水文过程季节变异分析[J]. 水科学进展, 2018, 29 (1):1-10.] [45] Jiang Xi. Progress in the research of snow and ice albedo[J]. Journal of Glaciology and Geocryology, 2006, 28 (5):728-738.[蒋熹. 冰雪反照率研究进展[J]. 冰川冻土, 2006, 28 (5):728-738.] [46] Hinkel K M, Paetzold F, Nelson F E, et al. Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska:1993-1999[J]. Global and Planetary Change, 2001, 29 (3/4):293-309. [47] Zhao Lin, Cheng Guodong, Li Shuxun, et al. Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau[J]. Chinese Science Bulletin, 2000, 45 (23):1205-1211.[赵林, 程国栋, 李述训, 等. 青藏高原五道梁附近多年冻土活动层冻结和融化过程[J]. 科学通报, 2000, 45 (23):1205-1211.] [48] Wang Qingfeng, Jin Huijun, Zhang Tingjun, et al. Active layer seasonal freeze-thaw processes and influencing factors in the alpine permafrost regions in the upper reaches of the Heihe River in Qilian Mountains[J]. Chinese Science Bulletin, 2016, 61 (24):2742-2756.[王庆锋, 金会军, 张廷军, 等. 祁连山区黑河上游高山多年冻土区活动层季节冻融过程及其影响因素[J]. 科学通报, 2016, 61 (24):2742-2756.] [49] Almeida I C, Schaefer C E, Michel R F, et al. Long term active layer monitoring at a warm-based glacier front from maritime Antarctica[J]. Catena, 2017, 149:572-581. [50] Romanovsky V E, Osterkamp T E. Thawing of the active layer on the coastal plain of the Alaskan Arctic[J]. Permafrost and Periglacial Processes, 1997, 8 (1):1-22. |