冰川冻土 ›› 2020, Vol. 42 ›› Issue (1): 104-123.doi: 10.7522/j.issn.1000-0240.2020.0004
王康1,7(), 张廷军2,8(
), 牟翠翠2,8, 钟歆玥3, 彭小清2,8, 曹斌4, 鲁蕾2,8, 郑雷5, 吴小丹2,8, 刘佳6
收稿日期:
2019-10-20
修回日期:
2020-03-21
出版日期:
2020-06-30
发布日期:
2020-07-03
通讯作者:
张廷军
E-mail:kwang@geo.ecnu.edu.cn;tjzhang@lzu.edu.cn
作者简介:
王康(1984 - ), 男, 安徽霍山人, 研究员, 2015年在兰州大学获得博士学位, 从事冰冻圈与气候变化研究. E-mail: kwang@geo.ecnu.edu.cn
基金资助:
Kang WANG1,7(), Tingjun ZHANG2,8(
), Cuicui MU2,8, Xinyue ZHONG3, Xiaoqing PENG2,8, Bin CAO4, Lei LU2,8, Lei ZHENG5, Xiaodan WU2,8, Jia LIU6
Received:
2019-10-20
Revised:
2020-03-21
Online:
2020-06-30
Published:
2020-07-03
Contact:
Tingjun ZHANG
E-mail:kwang@geo.ecnu.edu.cn;tjzhang@lzu.edu.cn
摘要:
第三极和北极地区对于区域和全球环境、 社会经济以及国家战略的重要性日益凸现。通过对第三极和北极气候与冰冻圈研究的现状、 趋势进行梳理总结, 为未来的系统研究提供借鉴。结果显示, 第三极和北极气候系统与冰冻圈正在发生显著变化并预计将持续下去。第三极和北极地区气温在以全球平均升温速度两倍的速率变暖, 且在20世纪70年代以来, 变化总体趋势高度一致; 降水变化总体呈增加趋势, 但变率和不确定性较大; 极端事件(尤其是极端降水)的频率增加; 积雪范围总体上呈现减少趋势, 雪水当量、 积雪天数的变化存在区域和周期性差异; 多年冻土温度升高, 活动层厚度增加, 亦呈现较大的区域差异。这些变化不仅对生态、 水文、 碳循环产生重要影响, 而且对基础设施、 社会经济以及人类健康产生不可忽视的影响, 包括重金属污染、 食品安全等。气候及冰冻圈快速变化会通过反照率反馈、 水汽反馈等机制被放大, 并通过一系列大气及海洋环流过程, 对周边乃至全球气候系统产生广泛影响。目前第三极和北极研究中面临的重要共同问题包括极度稀疏的地面观测资料、 模型物理机制和精细化描述不足以及缺少与周边地区乃至全球系统关联的量化研究和可靠证据。这些问题的解决都需要依赖地面监测网络的扩展以及对冰冻圈和气候系统物理过程理解的提升。从第三极到北极, 不仅是研究视角的扩大, 更是全面理解第三极和北极在地球系统中作用的必经之路。
中图分类号:
王康, 张廷军, 牟翠翠, 钟歆玥, 彭小清, 曹斌, 鲁蕾, 郑雷, 吴小丹, 刘佳. 从第三极到北极: 气候与冰冻圈变化及其影响[J]. 冰川冻土, 2020, 42(1): 104-123.
Kang WANG, Tingjun ZHANG, Cuicui MU, Xinyue ZHONG, Xiaoqing PENG, Bin CAO, Lei LU, Lei ZHENG, Xiaodan WU, Jia LIU. From the Third Pole to the Arctic: changes and impacts of the climate and cryosphere[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 104-123.
1 | Arctic Monitoring and Assessment Programme. Snow, water, ice and permafrost in the Arctic (SWIPA) 2017[M]. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP), 2017. |
2 | Intergovernmental Panel on Climate Change. Special report on the ocean and cryosphere in a changing climate[R]. IPCC Geneva, 2018. |
3 | Wu G X, He B, Duan A M, et al. Formation and variation of the atmospheric heat source over the Tibetan Plateau and its climate effects[J]. Advances in Atmospheric Sciences, 2017, 34(10): 1169 - 1184. |
4 | Zhang Yaocun, Qian Yongfu. Numerical studies on the effects of the critical height of Qinghai-Xizang Plateau uplift on the atmosphere[J]. Acta Meteorologica Sinica, 1999, 57(2): 157 - 167. |
张耀存, 钱永甫. 青藏高原隆升作用于大气临界高度的数值研究[J]. 气象学报, 1999, 57(2): 157 - 167. | |
5 | Liu Xiaodong, Tang Maocang. On the critical height of the effect of Qinghai-Xizang Plateau uplift on the atmosphere[J]. Plateau Meteorology, 1996, 15(2): 131 - 140. |
刘晓东, 汤懋苍. 论青藏高原隆起作用于大气的临界高度[J]. 高原气象, 1996, 15(2): 131 - 140. | |
6 | Cohen J, Screen J A, Furtado J C, et al. Recent Arctic amplification and extreme mid-latitude weather[J]. Nature Geoscience, 2014, 7(9): 627 - 637. |
7 | Kang Shichang, Guo Wanqin, Zhong Xinyue, et al. Changes in the mountain cryosphere and their impacts and adaptation measures[J]. Climate Change Research, 2020, 16(2): 143 - 152. |
康世昌, 郭万钦, 钟歆玥, 等. 全球山地冰冻圈变化、 影响与适应[J]. 气候变化研究进展, 2020, 16(2): 143 - 152. | |
8 | The State Council Information Office of the People’s Republic of China. China’s Arctic policy[M]. Beijing: People’s Publishing House, 2018. |
中华人民共和国国务院新闻办公室. 中国的北极政策[M]. 北京: 人民出版社, 2018. | |
9 | Government of Canada. Statement on Canada’s Arctic foreign policy[M]. Ottowa: Government of Canada, 2010. |
10 | Noaa Arctic Tiger Team. NOAA’s Arctic Vision and Strategy[M]. Silver Spring, MD: National Oceanic and Atmospheric Administration, 2011. |
11 | Ministry for Foreign Affairs. Denmark, Greenland and Faroe Islands: Kingdom of Denmark strategy for the Arctic 2011—2020[M]. Copenhagen: Ministry for Foreign Affairs, 2011. |
12 | House White. National strategy for the Arctic region[M]. Washington D C: Government of the United States of America, 2013. |
13 | National Oceanic and Atmospheric Administration. NOAA's Arctic action plan: supporting the national strategy for the Arctic region[M]. Silver Spring, MD: U.S. Department of Commerce, National Oceanic and Atmospheric Administration, 2014. |
14 | International Arctic Science Committee. Integrating Arctic research: a roadmap for the future[M]. Hague, HL: European Polar Board, 2016. |
15 | Joint Communication to the European Parliament and the Council. An integrated European Union policy for the Arctic[M]. Brussels: European Commission, 2016. |
16 | Interagency Arctic Research Policy Committee. Arctic Research Plan (FY 2017—2021)[M]. Washington, D C: Office of Science and Technology Policy, 2016. |
17 | Yao Tandong, Chen Fahu, Cui Peng, et al. From Tibetan Plateau to Third Pole and Pan-Third Pole[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 924 - 931. |
姚檀栋, 陈发虎, 崔鹏, 等. 专题: 青藏高原综合科学研究进展——从青藏高原到第三极和泛第三极[J]. 中国科学院院刊, 2017, 32(9): 924 - 931. | |
18 | Zhang Yili, Li Bingyuan, Zheng Du. A discussion on the boundary and area of the Tibetan Plateau in China[J]. Geographical Research, 2002, 21(1): 1 - 8. |
张镱锂, 李炳元, 郑度. 论青藏高原范围与面积[J]. 地理研究, 2002, 21(1): 1 - 8. | |
19 | Arctic Monitoring and Assessment Programme. Snow, water, ice and permafrost in the Arctic (SWIPA): climate change and the Cryosphere[M]. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP), 2011. |
20 | Yao T, Thompson L G, Mosbrugger V, et al. Third Pole Environment (TPE)[J]. Environmental Development, 2012, 3: 52 - 64. |
21 | Intergovernmental Panel on Climate Change. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013. |
22 | Yao T, Xue Y, Chen D, et al. Recent Third Pole’s rapid warming accompanies Cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423 - 444. |
23 | Overland J E, Wang M Y. Increased Variability in the Early Winter Subarctic North American Atmospheric Circulation[J]. Journal of Climate, 2015, 28(18): 7297 - 7305. |
24 | You Q L, Kang S C, Pepin N, et al. Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau, 1961—2005[J]. Geophysical Research Letters, 2008, 35(4): L04704. |
25 | Li L, Yang S, Wang Z, et al. Evidence of Warming and Wetting Climate over the Qinghai-Tibet Plateau[J]. Arctic, Antarctic, and Alpine Research, 2018, 42(4): 449 - 457. |
26 | Matthes H, Rinke A, Dethloff K. Recent changes in Arctic temperature extremes: warm and cold spells during winter and summer[J]. Environmental Research Letters, 2015, 10(11): 114020. |
27 | Bieniek P A, Walsh J E. Atmospheric circulation patterns associated with monthly and daily temperature and precipitation extremes in Alaska[J]. International Journal of Climatology, 2017, 37(S1): 208 - 217. |
28 | Hawkins E, Sutton R. Time of emergence of climate signals[J]. Geophysical Research Letters, 2012, 39(1): L01702. |
29 | Yang M X, Wang X J, Pang G J, et al. The Tibetan Plateau cryosphere: observations and model simulations for current status and recent changes[J]. Earth-Science Reviews, 2019, 190: 353 - 369. |
30 | Bintanja R, Andry O. Towards a rain-dominated Arctic[J]. Nature Climate Change, 2017, 7(4): 263 - 267. |
31 | Min S K, Zhang X, Zwiers F. Human-induced Arctic moistening[J]. Science, 2008, 320(5875): 518 - 20. |
32 | Wang X J, Pang G J, Yang M X. Precipitation over the Tibetan Plateau during recent decades: a review based on observations and simulations[J]. International Journal of Climatology, 2018, 38(3): 1116 - 1131. |
33 | Serreze M C, Walsh J E, Chapin F S, et al. Observational evidence of recent change in the northern high-latitude environment[J]. Climatic Change, 2000, 46(1/2): 159 - 207. |
34 | Hansen B B, Isaksen K, Benestad R E, et al. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic[J]. Environmental Research Letters, 2014, 9(11): 114021. |
35 | Chen H, Zhu Q, Peng C, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau[J]. Global Change Biology, 2013, 19(10): 2940 - 2955. |
36 | Deng H J, Pepin N C, Chen Y N. Changes of snowfall under warming in the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(14): 7323 - 7341. |
37 | Chen X N, Long D, Hong Y, et al. Climatology of snow phenology over the Tibetan plateau for the period 2001—2014 using multisource data[J]. International Journal of Climatology, 2018, 38(6): 2718 - 2729. |
38 | Zhang Tingjun, Zhong Xinyue. Classification and regionalization of the seasonal snow cover across the Eurasian Continent[J]. Journal of Glaciology and Geocryology, 2014, 36(3): 481 - 490. |
张廷军, 钟歆玥. 欧亚大陆积雪分布及其类型划分[J]. 冰川冻土, 2014, 36(3): 481 - 490. | |
39 | Pu Z X, Xu L, Salomonson V V. MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau[J]. Geophysical Research Letters, 2007, 34(6): L06706. |
40 | Osborne E, Richter-Menge J, Jeffries M. NOAA Arctic card: Effects of persistent Arctic warming continue to mount[C]//Osborne E, Richter-Menge J, Jeffries M, Silver Spring, MD: U. [S. Department of Commerce, National Oceanic and Atmospheric Administration, 2018.] |
41 | Qin D H, Liu S Y, Li P J. Snow cover distribution, variability, and response to climate change in western China[J]. Journal of Climate, 2006, 19(9): 1820 - 1833. |
42 | Shen S S P, Yao R, Ngo J, et al. Characteristics of the Tibetan Plateau snow cover variations based on daily data during 1997—2011[J]. Theoretical and Applied Climatology, 2014, 120(3/4): 445 - 453. |
43 | Xu W F, Ma L J, Ma M N, et al. Spatial-temporal variability of snow cover and depth in the Qinghai-Tibetan Plateau[J]. Journal of Climate, 2017, 30(4): 1521 - 1533. |
44 | Chen X, Liang S, Cao Y, et al. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001—2014[J]. Scientific Reports, 2015, 5: 16820. |
45 | Xiong C, Shi J C, Cui Y R, et al. Snowmelt pattern over high-mountain Asia detected from active and passive microwave remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1096 - 1100. |
46 | Lau W K M, Kim M K, Kim K M, et al. Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols[J]. Environmental Research Letters, 2010, 5(2): 025204. |
47 | Zhong X, Kang S, Zhang W, et al. Light-absorbing impurities in snow cover across Northern Xinjiang, China[J]. Journal of Glaciology, 2019, 65(254): 940 - 956. |
48 | Brown R, Derksen C, Wang L B. A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967—2008[J]. Journal of Geophysical Research: Atmospheres, 2010, 115: D16111. |
49 | Brown R D, Robinson D A. Northern Hemisphere spring snow cover variability and change over 1922—2010 including an assessment of uncertainty[J]. Cryosphere, 2011, 5(1): 219 - 229. |
50 | Callaghan T V, Johansson M, Brown R D, et al. The changing face of arctic snow cover: a synthesis of observed and projected changes[J]. AMBIO: A Journal of the Human Environment, 2011, 40(s1): 17 - 31. |
51 | Liston G E, Hiemstra C A. The changing cryosphere: pan-Arctic snow trends (1979—2009)[J]. Journal of Climate, 2011, 24(21): 5691 - 5712. |
52 | Eamer J, Ahlenius H, Prestrud P L. Global outlook for ice and snow[M]. UNEP/GRID-Arendal: Division of Early Warning and Assessment (DEWA), United Nations Environmental Programme, 2007. |
53 | Bulygina O N, Razuvaev V N, Korshunova N N. Changes in snow cover over Northern Eurasia in the last few decades[J]. Environmental Research Letters, 2009, 4(4): 045026. |
54 | Zhong X Y, Zhang T J, Kang S C, et al. Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012[J]. Cryosphere, 2018, 12(1): 227 - 245. |
55 | Zhong X, Zhang T, Wang K. Snow density climatology across the former USSR[J]. Cryosphere, 2014, 8(2): 785 - 799. |
56 | Zhang T, Barry R G, Knowles K, et al. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere[J]. Polar Geography, 1999, 23(2): 132 - 154. |
57 | Cao B, Zhang T, Wu Q, et al. Brief communication: Evaluation and inter-comparisons of Qinghai-Tibet Plateau permafrost maps based on a new inventory of field evidence[J]. The Cryosphere, 2019, 13(2): 511 - 519. |
58 | Zhao Lin, Wu Tonghua, Xie Changwei, et al. Support geoscience research, environmental management, and engineering construction with investigation and monitoring on permafrost in the Qinghai-Tibet Plateau, China[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(10): 1159 - 1168. |
赵林, 吴通华, 谢昌卫, 等. 多年冻土调查和监测为青藏高原地球科学研究, 环境保护和工程建设提供科学支撑[J]. 中国科学院院刊, 2017, 32(10): 1159 - 1168. | |
59 | Wu X, Nan Z, Zhao S, et al. Spatial modeling of permafrost distribution and properties on the Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes, 2018, 29(2): 86 - 99. |
60 | Gruber S. Derivation and analysis of a high-resolution estimate of global permafrost zonation[J]. The Cryosphere, 2012, 6(1): 221 - 233. |
61 | Zou D, Zhao L, Sheng Y, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2527 - 2542. |
62 | Cheng G D, Wu T H. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research-Earth Surface, 2007, 112(F2): F02S03. |
63 | Wu Q B, Zhang T J. Recent permafrost warming on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D13108. |
64 | Zhao L, Wu Q B, Marchenko S S, et al. Thermal state of permafrost and active layer in Central Asia during the International Polar Year[J]. Permafrost and Periglacial Processes, 2010, 21(2): 198 - 207. |
65 | Osterkamp T E. Characteristics of the recent warming of permafrost in Alaska[J]. Journal of Geophysical Research: Earth Surface, 2007, 112: F02S02. |
66 | Smith S L, Romanovsky V E, Lewkowicz A G, et al. Thermal state of permafrost in North America: a contribution to the International Polar Year[J]. Permafrost and Periglacial Processes, 2010, 21(2): 117 - 135. |
67 | Romanovsky V E, Smith S L, Christiansen H H. Permafrost thermal state in the Polar Northern Hemisphere during the International Polar Year 2007—2009: a synthesis[J]. Permafrost and Periglacial Processes, 2010, 21(2): 106 - 116. |
68 | Zhang Tingjun. Progress in global permafrost and climate change studies[J]. Quaternary Sciences, 2012, 32(1): 27 - 38. |
张廷军. 全球多年冻土与气候变化研究进展[J]. 第四纪研究, 2012, 32(1): 27 - 38. | |
69 | Romanovsky V E, Nicolsky D, Cable W, et al. A new wave of permafrost warming in the Alaskan Interior?[R]. American Geophysical Union Fall Meeting, 2017. |
70 | Wu T H, Zhao L, Li R, et al. Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau[J]. International Journal of Climatology, 2013, 33(4): 920 - 930. |
71 | Li R, Zhao L, Ding Y J, et al. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region[J]. Chinese Science Bulletin, 2012, 57(35): 4609 - 4616. |
72 | Wang K, Jafarov E, Overeem I, et al. A synthesis dataset of permafrost-affected soil thermal conditions for Alaska, USA[J]. Earth System Science Data, 2018, 10(4): 2311 - 2328. |
73 | Peng X Q, Zhang T J, Frauenfeld O W, et al. Spatiotemporal Changes in Active Layer Thickness under Contemporary and Projected Climate in the Northern Hemisphere[J]. Journal of Climate, 2018, 31(1): 251 - 266. |
74 | Wu Q B, Zhang T J. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research-Atmospheres, 2010, 115: D09107. |
75 | Wang Ninglian, Yao Tandong, Xu Baiqing, et al. Spatiotemporal pattern, trend, and influence of glacier change in Tibetan Plateau and surroundings under global warming[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1220-1232. |
王宁练, 姚檀栋, 徐柏青, 等. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响[J]. 中国科学院院刊, 2019, 34(11): 1220 - 1232. | |
76 | Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663 - 667. |
77 | Hanna E, Huybrechts P, Cappelen J, et al. Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing[J]. Journal of Geophysical Research: Atmospheres, 2011, 116: D24121. |
78 | Box J E, Cressie N, Bromwich D H, et al. Greenland ice sheet mass balance reconstruction. Part I: net snow accumulation (1600—2009)[J]. Journal of Climate, 2013, 26(11): 3919 - 3934. |
79 | Mernild S H, Knudsen N T, Lipscomb W H, et al. Increasing mass loss from Greenland’s Mittivakkat Gletscher[J]. Cryosphere, 2011, 5(2): 341 - 348. |
80 | Fisher D, Zheng J, Burgess D, et al. Recent melt rates of Canadian arctic ice caps are the highest in four millennia[J]. Global and Planetary Change, 2012, 84: 3 - 7. |
81 | Bennartz R, Shupe M D, Turner D D, et al. July 2012 Greenland melt extent enhanced by low-level liquid clouds[J]. Nature, 2013, 496(7443): 83 - 86. |
82 | Neff W, Compo G P, Ralph F M, et al. Continental heat anomalies and the extreme melting of the Greenland ice surface in 2012 and 1889[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(11): 6520 - 6536. |
83 | Keegan K M, Albert M R, Mcconnell J R, et al. Climate change and forest fires synergistically drive widespread melt events of the Greenland ice sheet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(22): 7964 - 7967. |
84 | Lindbäck K, Pettersson R, Hubbard A L, et al. Subglacial water drainage, storage, and piracy beneath the Greenland ice sheet[J]. Geophysical Research Letters, 2015, 42(18): 7606 - 7614. |
85 | Howat I M, Porter C, Noh M J, et al. Brief communication: sudden drainage of a subglacial lake beneath the Greenland ice sheet[J]. Cryosphere, 2015, 9(1): 103 - 108. |
86 | Palmer S, Mcmillan M, Morlighem M. Subglacial lake drainage detected beneath the Greenland ice sheet[J]. Nature Communications, 2015, 6: 8408. |
87 | Van Tricht K, Lhermitte S, Lenaerts J T, et al. Clouds enhance Greenland ice sheet meltwater runoff[J]. Nature Communications, 2016, 7: 10266. |
88 | Carmack E C, Yamamoto-Kawai M, Haine T W N, et al. Freshwater and its role in the Arctic marine system: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(3): 675 - 717. |
89 | Serreze M C, Barrett A P, Stroeve J. Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyzes[J]. Journal of Geophysical Research: Atmospheres, 2012, 117: D10104. |
90 | Willett K M, Williams C N, Dunn R J H, et al. HadISDH: an updateable land surface specific humidity product for climate monitoring[J]. Climate of the Past, 2013, 9(2): 657 - 677. |
91 | Instanes A, Kokorev V, Janowicz R, et al. Changes to freshwater systems affecting Arctic infrastructure and natural resources[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(3): 567 - 585. |
92 | Zhang Guoqing. Changes in lakes on the Tibetan Plateau observed from satellite data and their responses to climate variations[J]. Progress in Geography, 2018, 37(2): 214 - 223. |
张国庆. 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展[J]. 地理科学进展, 2018, 37: 214 - 223. | |
93 | Pekel J F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633): 418 - 422. |
94 | Zhang G Q, Yao T D, Shum C K, et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin[J]. Geophysical Research Letters, 2017, 44(11): 5550 - 5560. |
95 | Smith L C, Sheng Y, Macdonald G M, et al. Disappearing Arctic lakes[J]. Science, 2005, 308(5727): 1429. |
96 | Yao Tandong, Yao Zhijun. Impacts of glacial retreat on runoff on Tibetan Plateau[J]. Chinese Journal of Nature, 2010, 32(1): 4 - 8. |
姚檀栋, 姚治君. 青藏高原冰川退缩对河水径流的影响[J]. 自然杂志, 2010, 32(1): 4 - 8. | |
97 | Cao Jianting, Qin Dahe, Kang Ersi, et al. River discharge changes in the Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2005, 50: 2403 - 2408. |
曹建廷, 秦大河, 康尔泗, 等. 青藏高原外流区主要河流的径流变化[J]. 科学通报, 2005, 50(21): 2403 - 2408. | |
98 | Haine T W N, Curry B, Gerdes R, et al. Arctic freshwater export: status, mechanisms, and prospects[J]. Global and Planetary Change, 2015, 125: 13 - 35. |
99 | Giles K A, Laxon S W, Ridout A L, et al. Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre[J]. Nature Geoscience, 2012, 5(3): 194 - 197. |
100 | Rawlins M A, Steele M, Holland M M, et al. Analysis of the Arctic system for freshwater cycle intensification: observations and expectations[J]. Journal of Climate, 2010, 23(21): 5715 - 5737. |
101 | Zhang X, He J, Zhang J, et al. Enhanced poleward moisture transport and amplified northern high-latitude wetting trend[J]. Nature Climate Change, 2012, 3(1): 47 - 51. |
102 | Wang G X, Hu H C, Li T B. The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed[J]. Journal of Hydrology, 2009, 375(3/4): 438 - 449. |
103 | Cheng G, Jin H. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China[J]. Hydrogeology Journal, 2012, 21(1): 5 - 23. |
104 | Lique C, Holland M M, Dibike Y B, et al. Modeling the Arctic freshwater system and its integration in the global system: lessons learned and future challenges[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(3): 540 - 566. |
105 | Xie Gaodi, Lu Chunxia, Leng Yunfa, et al. Ecological assets valuation of the Tibetan Plateau[J]. Journal of Natural Resources, 2003, 18(2): 189 - 196. |
谢高地, 鲁春霞, 冷允法, 等. 青藏高原生态资产的价值评估[J]. 自然资源学报, 2003, 18(2): 189 - 196. | |
106 | Yang Y H, Fang J Y, Tang Y H, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands[J]. Global Change Biology, 2008, 14(7): 1592 - 1599. |
107 | Ding J, Li F, Yang G, et al. The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores[J]. Global Change Biology, 2016, 22(8): 2688 - 701. |
108 | Mu C, Zhang T, Wu Q, et al. Editorial: Organic carbon pools in permafrost regions on the Qinghai-Xizang (Tibetan) Plateau[J]. Cryosphere, 2015, 9(2): 479 - 486. |
109 | Tarnocai C, Canadell J G, Schuur E a G, et al. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochemical Cycles, 2009, 23(2): GB2023. |
110 | Hugelius G, Tarnocai C, Broll G, et al. The northern circumpolar soil carbon database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions[J]. Earth System Science Data, 2013, 5(1): 3 - 13. |
111 | Piao S, Wang X, Park T, et al. Characteristics, drivers and feedbacks of global greening[J]. Nature Reviews Earth and Environment, 2019, 1(1): 14 - 27. |
112 | Ding J Z, Chen L Y, Ji C J, et al. Decadal soil carbon accumulation across Tibetan permafrost regions[J]. Nature Geoscience, 2017, 10(6): 420 - 424. |
113 | Myers-Smith I H, Kerby J T, Phoenix G K, et al. Complexity revealed in the greening of the Arctic[J]. Nature Climate Change, 2020, 10(2): 106 - 117. |
114 | Mcguire A D, Christensen T R, Hayes D, et al. An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions[J]. Biogeosciences, 2012, 9(8): 3185 - 3204. |
115 | Cooper M D A, Estop-Aragones C, Fisher J P, et al. Limited contribution of permafrost carbon to methane release from thawing peatlands[J]. Nature Climate Change, 2017, 7(7): 507 - 511. |
116 | Vonk J E, Gustafsson O. Permafrost-carbon complexities[J]. Nature Geoscience, 2013, 6(9): 675 - 676. |
117 | Ivanova N, Pedersen L T, Tonboe R T, et al. Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations[J]. Cryosphere, 2015, 9(5): 1797 - 1817. |
118 | Cavalieri D J, Parkinson C L. Arctic sea ice variability and trends, 1979—2010[J]. Cryosphere, 2012, 6(4): 881 - 889. |
119 | Meier W N, Hovelsrud G K, Van Oort B E H, et al. Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity[J]. Reviews of Geophysics, 2014, 52(3): 185 - 217. |
120 | Lindsay R, Schweiger A. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations[J]. Cryosphere, 2015, 9(1): 269 - 283. |
121 | Laxon S W, Giles K A, Ridout A L, et al. CryoSat-2 estimates of Arctic sea ice thickness and volume[J]. Geophysical Research Letters, 2013, 40(4): 732 - 737. |
122 | Zygmuntowska M, Rampal P, Ivanova N, et al. Uncertainties in Arctic sea ice thickness and volume: new estimates and implications for trends[J]. Cryosphere, 2014, 8(2): 705 - 720. |
123 | Kurtz N T, Galin N, Studinger M. An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting[J]. Cryosphere, 2014, 8(4): 1217 - 1237. |
124 | Kwok R, Cunningham G F. Variability of Arctic sea ice thickness and volume from CryoSat-2[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2045):20140157. |
125 | Tilling R L, Ridout A, Shepherd A, et al. Increased Arctic sea ice volume after anomalously low melting in 2013[J]. Nature Geoscience, 2015, 8(8): 643 - 646. |
126 | Kaleschke L, Tian-Kunze X, Maaß N, et al. Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period[J]. Geophysical Research Letters, 2012, 39(5): L05501. |
127 | Huntemann M, Heygster G, Kaleschke L, et al. Empirical sea ice thickness retrieval during the freeze up period from SMOS high incident angle observations[J]. The Cryosphere Discussion, 2013, 7: 4379 - 4405. |
128 | Kaleschke L, Tian-Kunze X, Maaß N, et al. SMOS sea ice product: operational application and validation in the Barents Sea marginal ice zone[J]. Remote Sensing of Environment, 2016, 180: 264 - 273. |
129 | Perovich D K, Richter-Menge J A. Regional variability in sea ice melt in a changing Arctic[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2045):20140165. |
130 | Kwok R, Markus T. Potential basin-scale estimates of Arctic snow depth with sea ice freeboards from CryoSat-2 and ICESat-2: an exploratory analysis[J]. Advances in Space Research, 2018, 62(6): 1243 - 1250. |
131 | Rösel A, Kaleschke L. Exceptional melt pond occurrence in the years 2007 and 2011 on the Arctic sea ice revealed from MODIS satellite data[J]. Journal of Geophysical Research: Oceans, 2012, 117: C05018. |
132 | Nicolaus M, Katlein C, Maslanik J, et al. Changes in Arctic sea ice result in increasing light transmittance and absorption[J]. Geophysical Research Letters, 2012, 39(24): L24501. |
133 | Howell S E L, Derksen C, Pizzolato L, et al. Multiyear ice replenishment in the Canadian Arctic Archipelago: 1997—2013[J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 1623 - 1637. |
134 | Su F G, Duan X L, Chen D L, et al. Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau[J]. Journal of Climate, 2013, 26(10): 3187 - 3208. |
135 | Ji Z, Kang S. Projection of snow cover changes over China under RCP scenarios[J]. Climate Dynamics, 2012, 41(3/4): 589 - 600. |
136 | Koven C D, Riley W J, Stern A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models[J]. Journal of Climate, 2013, 26(6): 1877 - 1900. |
137 | Mcguire A D, Koven C, Lawrence D M, et al. Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009[J]. Global Biogeochemical Cycles, 2016, 30(7): 1015 - 1037. |
138 | Slater A G, Lawrence D M. Diagnosing present and future permafrost from Climate Models[J]. Journal of Climate, 2013, 26(15): 5608 - 5623. |
139 | Nan Z T, Li S X, Cheng G D. Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years[J]. Science in China: Series D Earth Sciences, 2005, 48(6): 797 - 804. |
140 | Guo D L, Wang H J, Li D. A projection of permafrost degradation on the Tibetan Plateau during the 21st Century[J]. Journal of Geophysical Research: Atmospheres, 2012, 117: D05106. |
141 | Schuur E A, Mcguire A D, Schadel C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520(7546): 171 - 179. |
142 | Streletskaya I D, Vasiliev A A, Vanstein B G. Erosion of sediment and organic carbon from the Kara Sea coast[J]. Arctic, Antarctic, and Alpine Research, 2009, 41(1): 79 - 87. |
143 | Immerzeel W W, Pellicciotti F, Bierkens M F P. Rising river flows throughout the Twenty-First Century in two Himalayan glacierized watersheds[J]. Nature Geoscience, 2013, 6(9): 742 - 745. |
144 | Van Huissteden J, Dolman A. Soil carbon in the Arctic and the permafrost carbon feedback[J]. Current Opinion in Environmental Sustainability, 2012, 4(5): 545 - 551. |
145 | Arrigo K R, Perovich D K, Pickart R S, et al. Massive phytoplankton blooms under Arctic sea ice[J]. Science, 2012, 336(6087): 1408. |
146 | Arrigo K R, Van Dijken G L. Continued increases in Arctic Ocean primary production[J]. Progress in Oceanography, 2015, 136: 60 - 70. |
147 | Anderson L G, Jutterström S, Hjalmarsson S, et al. Out-gassing of CO2 from Siberian Shelf seas by terrestrial organic matter decomposition[J]. Geophysical Research Letters, 2009, 36(20): L20601. |
148 | Attard K M, Hancke K, Sejr M K, et al. Benthic primary production and mineralization in a High Arctic fjord: in situ assessments by aquatic eddy covariance[J]. Marine Ecology Progress Series, 2016, 554: 35 - 50. |
149 | Golden K M, Ackley S F, Lytle V V. The percolation phase transition in sea ice[J]. Science, 1998, 282(5397): 2238 - 2241. |
150 | Sievers J, Papakyriakou T, Larsen S E, et al. Estimating surface fluxes using eddy covariance and numerical ogive optimization[J]. Atmospheric Chemistry and Physics, 2015, 15(4): 2081 - 2103. |
151 | Bai E, Li S, Xu W, et al. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics[J]. New Phytol, 2013, 199(2): 431 - 440. |
152 | Wang K, Zhang T, Zhong X. Changes in the timing and duration of the near-surface soil freeze/thaw status from 1956 to 2006 across China[J]. The Cryosphere, 2015, 9(3): 1321 - 1331. |
153 | Whittington P, Ketcheson S, Price J, et al. Areal differentiation of snow accumulation and melt between peatland types in the James Bay Lowland[J]. Hydrological Processes, 2012, 26(17): 2663 - 2671. |
154 | Loranty M M, Berner L T, Goetz S J, et al. Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations[J]. Global Change Biology, 2014, 20(2): 594 - 606. |
155 | Shen M, Piao S, Jeong S J, et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30): 9299 - 9304. |
156 | Gui Juan, Wang Xufeng, Li Zongxing, et al. Research on the response of vegetation change to human activities in typical cryosphere areas: taking the Qilian Mountains as an example[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1235 - 1243. |
桂娟, 王旭峰, 李宗省, 等. 典型冰冻圈地区植被变化对人类活动的响应研究——以祁连山为例[J]. 冰川冻土, 2019, 41(5): 1235 - 1243. | |
157 | Pfeffer W T, Arendt A A, Bliss A, et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers[J]. Journal of Glaciology, 2014, 60(221): 537 - 552. |
158 | Yao Tandong, Qin Dahe, Shen Yongping, et al. Cryospheric changes and their impacts on regional water cycle and ecological conditions in the Qinghai-Tibetan Plateau[J]. Chinese Journal of Nature, 2013, 35(3): 179 - 186. |
姚檀栋, 秦大河, 沈永平, 等. 青藏高原冰冻圈变化及其对区域水循环和生态条件的影响[J]. 自然杂志, 2013, 35(3): 179 - 186. | |
159 | Shi Yafeng. Estimation of the water resources affected by climatic warming and glacier shrinkage before 2050 in West China[J]. Journal of Glaciology and Geocryology, 2001, 23(4): 333 - 341. |
施雅风. 2050年前气候变暖冰川萎缩对水资源影响情景预估[J]. 冰川冻土, 2001, 23(4): 333 - 341. | |
160 | Shi Yafeng, Liu Shiyin. Pre-estimation for the response of China glaciers to global warming in the 21st Century[J]. Chinese Science Bulletin, 2000, 45(4): 434 - 438. |
施雅风, 刘时银. 中国冰川对21世纪全球变暖响应的预估[J]. 科学通报, 2000, 45(4): 434 - 438. | |
161 | Barber D G, Hop H, Mundy C J, et al. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone[J]. Progress in Oceanography, 2015, 139: 122 - 150. |
162 | Rysgaard S, Bendtsen J, Delille B, et al. Sea ice contribution to the air-sea CO2 exchange in the Arctic and Southern Oceans[J]. Tellus Series B: Chemical and Physical Meteorology, 2011, 63(5): 823 - 830. |
163 | Ardyna M, Babin M, Gosselin M, et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms[J]. Geophysical Research Letters, 2014, 41(17): 6207 - 6212. |
164 | Leu E, Mundy C J, Assmy P, et al. Arctic spring awakening: steering principles behind the phenology of vernal ice algal blooms[J]. Progress in Oceanography, 2015, 139: 151 - 170. |
165 | Cherry S G, Derocher A E, Thiemann G W, et al. Migration phenology and seasonal fidelity of an Arctic marine predator in relation to sea ice dynamics[J]. Journal of Animal Ecology, 2013, 82(4): 912 - 921. |
166 | Fossheim M, Primicerio R, Johannesen E, et al. Recent warming leads to a rapid borealization of fish communities in the Arctic[J]. Nature Climate Change, 2015, 5(7): 673 - 677. |
167 | Bailleul F, Lesage V, Power M, et al. Migration phenology of beluga whales in a changing Arctic[J]. Climate Research, 2012, 53(3): 169 - 178. |
168 | Scholin C A, Gulland F, Doucette G J, et al. Mortality of sea lions along the central California coast linked to a toxic diatom bloom[J]. Nature, 2000, 403(6765): 80 - 84. |
169 | Egeland G M, Pacey A, Cao Z, et al. Food insecurity among Inuit preschoolers: Nunavut Inuit Child Health Survey, 2007-2008[J]. Canadian Medical Association Journal, 2010, 182(3): 243 - 248. |
170 | Overland J E, Francis J A, Hanna E, et al. The recent shift in early summer Arctic atmospheric circulation[J]. Geophysical Research Letters, 2012, 39(19): L19804. |
171 | Kwok R, Spreen G, Pang S. Arctic sea ice circulation and drift speed: decadal trends and ocean currents[J]. Journal of Geophysical Research-Oceans, 2013, 118(5): 2408 - 2425. |
172 | Hakkinen S, Proshutinsky A, Ashik I. Sea ice drift in the Arctic since the 1950s[J]. Geophysical Research Letters, 2008, 35(19): L19704. |
173 | Galley R, Else B, Prinsenberg S, et al. Sea ice concentration, extent, age, motion and thickness in regions of proposed offshore oil and gas development near the Mackenzie Delta-Canadian Beaufort Sea[J]. Arctic, 2013, 66(1): 105 - 116. |
174 | Barber D, Mccullough G, Babb D, et al. Climate change and ice hazards in the Beaufort Sea[J]. Elementa: Science of the Anthropocene, 2014, 2: 000025. |
175 | Perlwitz J P, Garcia-Pando C P, Miller R L. Predicting the mineral composition of dust aerosols. Part 1: Representing key processes[J]. Atmospheric Chemistry and Physics, 2015, 15(20): 11593 - 11627. |
176 | Overland J, Francis J A, Hall R, et al. The melting Arctic and midlatitude weather patterns: are they connected?[J]. Journal of Climate, 2015, 28(20): 7917 - 7932. |
177 | Wu B Y, Su J Z, D’arrigo R. Patterns of Asian winter climate variability and links to Arctic sea ice[J]. Journal of Climate, 2015, 28(17): 6841 - 6858. |
178 | Wu Guoxiong, Duan Anmin, Zhang Xueqin, et al. Extreme weather and climate changes and its environmental effects over the Tibetan Plateau[J]. Chinese Journal of Nature, 2013, 35(3): 167 - 171. |
吴国雄, 段安民, 张雪芹, 等. 青藏高原极端天气气候变化及其环境效应[J]. 自然杂志, 2013, 35(3): 167 - 171. | |
179 | Melvin A M, Larsen P, Boehlert B, et al. Climate change damages to Alaska public infrastructure and the economics of proactive adaptation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(E2): 122 - 131. |
180 | Schuster P F, Schaefer K M, Aiken G R, et al. Permafrost stores a globally significant amount of mercury[J]. Geophysical Research Letters, 2018, 45(3): 1463 - 1471. |
181 | Adger W N, Barnett J, Brown K, et al. Cultural dimensions of climate change impacts and adaptation[J]. Nature Climate Change, 2012, 3(2): 112 - 117. |
182 | Zou Y, Wang Y, Zhang Y, et al. Arctic sea ice, Eurasia snow, and extreme winter haze in China[J]. Science Advances, 2017, 3(3): e1602751. |
183 | Watts N, Adger W N, Agnolucci P, et al. Health and climate change: policy responses to protect public health[J]. Lancet, 2015, 386(10006): 1861 - 1914. |
184 | Pecl G T, Araujo M B, Bell J D, et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being[J]. Science, 2017, 355(6332): eaai9214. |
185 | Ying Xue, Wu Tonghua, Su Bo, et al. Discussion on the evaluation method of cryosphere services[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1271 - 1280. |
应雪, 吴通华, 苏勃, 等. 冰冻圈服务评估方法探讨[J]. 冰川冻土, 2019, 41(5): 1271 - 1280. | |
186 | Wu Guoxiong, Zhuo Haifeng, Wang Ziqian, et al. Two types of summertime heating over the Asian large-scale orography and excitation of potential-vorticity forcing I. over Tibetan Plateau[J]. Science China Earth Sciences, 2016, 46(9): 1209 - 1222. |
吴国雄, 卓海峰, 王子谦, 等. 夏季亚洲大地形双加热及近对流层顶位涡强迫的激发(I): 青藏高原主体加热[J]. 中国科学: 地球科学, 2016, 46(9): 1209 - 1222. | |
187 | Su B H, Jiang D B, Zhang R, et al. Difference between the North Atlantic and Pacific meridional overturning circulation in response to the uplift of the Tibetan Plateau[J]. Climate of the Past, 2018, 14(6): 751 - 762. |
188 | Liu Zhenyuan, Zhang Jie, Chen Li. Effects of vegetation degradation on atmospheric circulation over the Tibetan Plateau and its surrounding areas[J]. Acta Ecologica Sinica, 2018, 38(1): 132 - 142. |
刘振元, 张杰, 陈立. 青藏高原植被退化对高原及周边地区大气环流的影响[J]. 生态学报, 2018, 38(1): 132 - 142. | |
189 | Francis J A, Vavrus S J, Cohen J. Amplified Arctic warming and mid-latitude weather: new perspectives on emerging connections[J]. WIREs Climate Change, 2017, 8(5): e474. |
190 | Sato K, Inoue J, Watanabe M. Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter[J]. Environmental Research Letters, 2014, 9(8): 084009. |
191 | Overland J E, Wang M Y. Arctic-midlatitude weather linkages in North America[J]. Polar Science, 2018, 16: 1 - 9. |
192 | Cohen J, Zhang X, Francis J, et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather[J]. Nature Climate Change, 2019, 10(1): 20 - 29. |
193 | Dai A, Song M. Little influence of Arctic amplification on mid-latitude climate[J]. Nature Climate Change, 2020, 10(3): 1 - 7. |
194 | Liu Y, Lu M, Yang H, et al. Land-atmosphere-ocean coupling associated with the Tibetan Plateau and its climate impacts[J]. National Science Review, 2020, 7(3): 534 - 552. |
195 | Francis J A, Vavrus S J, Cohen J. Amplified Arctic warming and mid-latitude weather: new perspectives on emerging connections[J]. Wiley Interdisciplinary Reviews: Climate Change, 2017, 8(5): e474. |
196 | Screen J A. Climate science far-flung effects of Arctic warming[J]. Nature Geoscience, 2017, 10(4): 253 - 254. |
197 | Overland J E, Dethloff K, Francis J A, et al. Nonlinear response of mid-latitude weather to the changing Arctic[J]. Nature Climate Change, 2016, 6(11): 992 - 999. |
198 | Pithan F, Mauritsen T. Arctic amplification dominated by temperature feedbacks in contemporary climate models[J]. Nature Geoscience, 2014, 7(3): 181 - 184. |
199 | Minder J R, Letcher T W, Liu C H. The character and causes of elevation-dependent warming in high-resolution simulations of rocky mountain climate change[J]. Journal of Climate, 2018, 31(6): 2093 - 2113. |
200 | Pepin N, Bradley R S, Diaz H F, et al. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change, 2015, 5(5): 424 - 430. |
201 | Hadley O L, Kirchstetter T W. Black-carbon reduction of snow albedo[J]. Nature Climate Change, 2012, 2(6): 437 - 440. |
202 | Zhang Y L, Kang S C, Sprenger M, et al. Black carbon and mineral dust in snow cover on the Tibetan Plateau[J]. Cryosphere, 2018, 12(2): 413 - 431. |
203 | Wang T, Peng S S, Ottle C, et al. Spring snow cover deficit controlled by intraseasonal variability of the surface energy fluxes[J]. Environmental Research Letters, 2015, 10(2): 024018. |
204 | Zhang T, Stamnes K, Bowling S A. Impact of clouds on surface radiative fluxes and snowmelt in the arctic and subarctic[J]. Journal of Climate, 1996, 9(9): 2110 - 2123. |
205 | Wang K, Zhang T J, Zhang X D, et al. Continuously amplified warming in the Alaskan Arctic: implications for estimating global warming hiatus[J]. Geophysical Research Letters, 2017, 44(17): 9029 - 9038. |
206 | Huang J B, Zhang X D, Zhang Q Y, et al. Recently amplified arctic warming has contributed to a continual global warming trend[J]. Nature Climate Change, 2017, 7(12): 875 - 879. |
207 | Costanza R, Jorgensen S E. Understanding and solving environmental problems in the 21st Century: toward a new, integrated hard problem science[M]. Amsterdam, NL: Elsevier, 2002. |
208 | Soja A, Groisman P. Earth science and the integral climatic and socio-economic drivers of change across northern Eurasia: the NEESPI legacy and future direction[J]. Environmental Research Letters, 2018: 040401. |
209 | Bloschl G, Hall J, Parajka J, et al. Changing climate shifts timing of European floods[J]. Science, 2017, 357(6351): 588 - 590. |
210 | Diaz D, Moore F. Quantifying the economic risks of climate change[J]. Nature Climate Change, 2017, 7(11): 774 - 782. |
211 | Hsiang S, Kopp R, Jina A, et al. Estimating economic damage from climate change in the United States[J]. Science, 2017, 356(6345): 1362 - 1369. |
212 | Creed I F, Lane C R, Serran J N, et al. Enhancing protection for vulnerable waters[J]. Nature Geoscience, 2017, 10(11): 809 - 815. |
213 | Qin D H, Ding Y J, Xiao C D, et al. Cryospheric Science: research framework and disciplinary system[J]. National Science Review, 2018, 5(2): 255 - 268. |
214 | Leemans R, Asrar G, Busalacchi A, et al. Developing a common strategy for integrative global environmental change research and outreach: the Earth System Science Partnership (ESSP) Strategy paper[J]. Current Opinion in Environmental Sustainability, 2009, 1(1): 4 - 13. |
215 | Xiao Cunde, Wang Shijin, Qin Dahe. A preliminary study on cryosphere service function and its value estimation[J]. Climate Change Research, 2016, 12(1): 45 - 52. |
效存德, 王世金, 秦大河. 冰冻圈服务功能及其价值评估初探[J]. 气候变化研究进展, 2016, 12(1): 45 - 52. | |
216 | Wang Shijin, Ding Yongjian, Xiao Cunde. Integrated impacts of cryosphere change on the economic and social system and its adaptive management strategies[J]. Journal of Glaciology and Geocryology, 2018, 40(5): 863 - 874. |
王世金, 丁永建, 效存德. 冰冻圈变化对经济社会系统的综合影响及其适应性管理策略[J]. 冰川冻土, 2018, 40(5): 863 - 874. |
[1] | 杜苗苗, 张芬, 勾晓华, 刘兰娅, 夏敬清, 吴秀平. 祁连山中东部青海云杉径向生长对气候变暖的响应差异[J]. 冰川冻土, 2022, 44(1): 14-23. |
[2] | 周雪飞, 徐嘉, 张绪冰. 基于Sentinel-1卫星数据的北极西北航道通航适宜性分析[J]. 冰川冻土, 2022, 44(1): 117-132. |
[3] | 陈龙飞, 张万昌, 高会然. 三江源地区1980—2019年积雪时空动态特征及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 133-146. |
[4] | 李艳, 金会军, 温智, 赵子龙, 金晓颖. 多年冻土区斜坡稳定性研究综述[J]. 冰川冻土, 2022, 44(1): 203-216. |
[5] | 刘金平, 任艳群, 张万昌, 陶辉, 易路. 雅鲁藏布江流域气候和下垫面变化对径流的影响研究[J]. 冰川冻土, 2022, 44(1): 275-287. |
[6] | 达伟, 王书峰, 沈永平, 陈安安, 毛炜峄, 张伟. 1957—2019年昆仑山北麓车尔臣河流域水文情势及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 46-55. |
[7] | 高文德,王昱,李宗省,王文胜,杨盛梅. 高寒内流区极端降水的气候变化特征分析[J]. 冰川冻土, 2021, 43(6): 1693-1703. |
[8] | 胡春丽,李辑,郭婷婷,王婉昭,王婷,丁抗抗,焦敏,李菲. 1961—2016年东北地区冬季寒潮事件变化特征及其对区域气候变暖的响应[J]. 冰川冻土, 2021, 43(6): 1755-1763. |
[9] | 唐倩玉,张威,刘亮,柴乐,李亚鹏,张廉卿,孙波,张宏杰. 川西螺髻山清水沟倒数第二次冰期以来的冰川规模与古气候重建[J]. 冰川冻土, 2021, 43(6): 1869-1877. |
[10] | 周成林. 冰冻圈科学常见误用专业术语解析[J]. 冰川冻土, 2021, 43(6): 1904-1911. |
[11] | 贺鹏真,谢周清. 氧同位素示踪夏季北冰洋(62.3°~74.7° N)大气硝酸盐形成途径的研究[J]. 冰川冻土, 2021, 43(5): 1344-1353. |
[12] | 殷宝玲,刘琪,王叶堂. 1961—2017年南极冰盖近地面风时空变化研究[J]. 冰川冻土, 2021, 43(5): 1383-1399. |
[13] | 唐志光,邓刚,胡国杰,王欣,蒋宗立,桑国庆. 亚洲高山区积雪物候时空动态及其对气候变化的响应[J]. 冰川冻土, 2021, 43(5): 1400-1411. |
[14] | 岳晓英,李忠勤,王飞腾,李宏亮,沈思民. 天山乌鲁木齐河源1号冰川消融期反照率特征[J]. 冰川冻土, 2021, 43(5): 1412-1423. |
[15] | 田洪阵,肖月,杨太保,刘沁萍,张开帆. 1973—2020年阿尔金山冰川面积变化及其对气温变化的响应[J]. 冰川冻土, 2021, 43(5): 1424-1434. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000