冰川冻土 ›› 2020, Vol. 42 ›› Issue (2): 562-574.doi: 10.7522/j.issn.1000-0240.2020.0052
所属专题: 第二次青藏科考论文集1
李明月1,2(), 孙学军1,2, 李胜楠1,2, 张强弓1,3(
)
收稿日期:
2019-03-26
修回日期:
2020-07-23
出版日期:
2020-08-31
发布日期:
2020-09-11
通讯作者:
张强弓
E-mail:limingyue@itpcas.ac.cn;qianggong.zhang@itpcas.ac.cn
作者简介:
李明月(1996 - ), 女, 河南洛阳人, 2018年在东北大学获学士学位, 现为中国科学院青藏高原研究所在读硕士研究生, 从事冰冻圈环境地球化学研究. E-mail: limingyue@itpcas.ac.cn
基金资助:
Mingyue LI1,2(), Xuejun SUN1,2, Shengnan LI1,2, Qianggong ZHANG1,3(
)
Received:
2019-03-26
Revised:
2020-07-23
Online:
2020-08-31
Published:
2020-09-11
Contact:
Qianggong ZHANG
E-mail:limingyue@itpcas.ac.cn;qianggong.zhang@itpcas.ac.cn
摘要:
冰川融水径流是冰川流域物质运移的重要通道, 对其水化学特征和变化的研究有助于揭示冰川作用区物质的生物地球化学循环过程, 并为认识和评价冰川消融对自然环境和人类生活的影响提供基础。青藏高原及其周边地区分布着除两极以外最大储量的冰川, 近年来在气候变暖背景下冰川加速退缩消融。该地区冰川融水径流中各类化学组分的变化及其气候环境效应研究逐渐成为热点。因此, 通过概述青藏高原冰川融水径流中无机化学组分的含量和时空变化特征, 并总结离子和元素的主要来源及常用的物源追踪手段, 进一步综合分析得到: 冰川融水径流中离子和微量元素的含量及变化特征受冰川消融、 基岩性质、 径流水文特征和其他水体物理化学过程等因子和过程的共同影响。在总结该研究领域现存问题的基础上进行了展望, 认为应加强观测和基础数据积累, 厘清无机水化学组分的输移规律, 深入揭示影响水化学组分变化的多因素的协同拮抗作用机制, 评价冰川融水径流水化学的气候环境效应, 为应对青藏高原冰川消融带来的环境变化提供科学指导。
中图分类号:
李明月, 孙学军, 李胜楠, 张强弓. 青藏高原及其周边地区冰川融水径流无机水化学特征研究进展[J]. 冰川冻土, 2020, 42(2): 562-574.
Mingyue LI, Xuejun SUN, Shengnan LI, Qianggong ZHANG. Advances on inorganic hydrochemistry of glacial meltwater runoff in the Qinghai-Tibet Plateau and its surrounding areas[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 562-574.
表1
青藏高原地区冰川融水径流一般理化性质"
冰川名称 | pH | EC/(μS·cm-1) | TDS/(mg·L-1) | 采样日期 | 文献来源 |
---|---|---|---|---|---|
乌鲁木齐河源1号冰川 | 8.11 | 81.40 | 48.30 | 5月31日 - 9月30日 | [ |
海螺沟冰川 | 8.15 | 95.40 | 48.30 | 4月8日 - 11月24日 | [ |
卡尔塔马克冰川 | 9.10 | 64.00 | 32.00 | 7 - 8月 | [ |
科其喀尔冰川 | 8.53 | 138.90 | 69.00 | 6 - 9月 | [ |
七一冰川 | 8.10 | 61.60 | 45.33 | 6 - 9月 | [ |
枪勇冰川 | 8.71 | 153.83 | 121.00 | 7 - 8月 | [ |
冬克玛底冰川 | 8.15 | 62.67 | 5 - 11月 | [ | |
老虎沟12号冰川 | 7.39 | 135.00 | 61.40 | 6 - 9月 | [ |
白水1号冰川 | 8.21 | 16.02 | 8月29日 - 9月3日 | [ | |
青藏高原自然水体 | 7.54 | 450.34 | 225.54 | 8月 | [ |
1 | Huss M, Bookhagen B, Huggel C, et al. Toward mountains without permanent snow and ice[J]. Earths Future, 2017, 5(5): 418 - 435. |
2 | Zemp M, Frey H, Gaertner-Roer I, et al. Historically unprecedented global glacier decline in the early 21st century[J]. Journal of Glaciology, 2015, 61(228): 745 - 762. |
3 | Sorg A, Bolch T, Stoffel M, et al. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)[J]. Nature Climate Change, 2012, 2(10): 725 - 731. |
4 | Zhang Fan, Qaiser F U R, Zeng Chen, et al. Meltwater hydrochemistry at four glacial catchments in the headwater of Indus River[J]. Environmental Science and Pollution Research, 2019, 26(23): 23645 - 23660. |
5 | Brown G H. Glacier meltwater hydrochemistry[J]. Applied Geochemistry, 2002, 17(7): 855 - 883. |
6 | Anderson S P, Drever J I, Frost C D, et al. Chemical weathering in the foreland of a retreating glacier[J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1173 - 1189. |
7 | IPCC. Summary for policymakers [M/OL]//IPCC. Special report on the ocean and cryosphere in a changing climate. 2019 [2020-02-10]. . |
8 | Kang Shichang, Guo Wanqin, Zhong Xinyue, et al. Changes in the mountain cryosphere and their impacts and adaptation measures[J]. Climate Change Research, 2020, 16 (2): 143 - 152. |
康世昌, 郭万钦, 钟歆玥, 等. 全球山地冰冻圈变化、 影响与适应[J]. 气候变化研究进展, 2020, 16(2): 143 - 152. | |
9 | Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088 - 1090. |
10 | Johannessen M and Henriksen A. Chemistry of snow meltwater-Changes in concentration during melting[J]. Water Resources Research, 1978, 14(4): 615 - 619. |
11 | Piper A M. A graphic procedure in the geochemical interpretation of water-analyses[J]. Transactions-American Geophysical Union, 1944, 25: 914 - 923. |
12 | Hasnain S I, Subramanian V, Dhanpal K. Chemical characteristics and suspended sediment load of meltwaters from a Himalayan glacier in India[J]. Journal of Hydrology, 1989, 106(1): 99 - 108. |
13 | Singh V B, Ramanathan A, Pottakkal J G, et al. Seasonal variation of the solute and suspended sediment load in Gangotri glacier meltwater, central Himalaya, India[J]. Journal of Asian Earth Sciences, 2014, 79: 224 - 234. |
14 | Yde J C, Riger-Kusk M, Christiansen H H, et al. Hydrochemical characteristics of bulk meltwater from an entire ablation season, Longyearbreen, Svalbard[J]. Journal of Glaciology, 2017, 54(185): 259 - 272. |
15 | Bhatia M P, Kujawinski E B, Das S B, et al. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean[J]. Nature Geoscience, 2013, 6(4): 274 - 278. |
16 | Bogdal C, Schmid P, Zennegg M, et al. Blast from the past: melting glaciers as a relevant source for persistent organic pollutants[J]. Environmental Science & Technology, 2009, 43(21): 8173 - 8177. |
17 | Zhang Qianggong, Sun Xunjun, Sun Shiwei, et al. Understanding Mercury Cycling in Tibetan Glacierized Mountain Environment: Recent Progress and Remaining Gaps[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(5): 1 - 20. |
18 | Pu Jianchen, Wang Ping, Huang Cuilan. Chemical characteristics of glacier ice, snow and water in source area of Yangtze river[J]. Environmental Science, 1988, 9(4): 14 - 19. |
蒲健辰, 王平, 皇翠兰. 长江江源地区冰川冰、 雪、 水的化学特征[J]. 环境科学, 1988, 9(4): 14 - 19. | |
19 | Wang Lilun, Wang Ping, Su Zhen, et al. Geochemical characteristics of glaciers in Hengduan mountain[J]. Geographical Research, 1989, 8(3): 66 - 77. |
王立伦, 王平, 苏珍, 等. 横断山冰川地球化学特征[J]. 地理研究, 1989, 8(3): 66 - 77. | |
20 | Yao Tandong, Thompson L, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663 - 667. |
21 | Han Tianding, Li Xiangying, Gao Mingjie, et al. Electrical conductivity during the ablation process of the Glacier No. 1 at the headwaters of the Urumqi River in the Tianshan Mountains[J]. Arctic Antarctic and Alpine Research, 2015, 47(2): 327 - 334. |
22 | Kehrwald N M, Thompson L G, Yao T D, et al. Mass loss on Himalayan glacier endangers water resources[J]. Geophysical Research Letters, 2008, 35(22): 6. |
23 | Wu Guangjian, Yao Tandong, Wang Weicai, et al. Glacial disasters in the Tibetan Plateau and surrounding areas[J]. Proceedings of the Chinese Academy of Sciences, 2019: 1285 - 1292. |
邬光剑, 姚檀栋, 王伟财, 等. 青藏高原及周边地区的冰川灾害[J]. 中国科学院院刊, 2019: 1285 - 1292. | |
24 | Sun Xuejun, Wang Kang, Guo Junming, et al. Mercury transport from glacier to runoff in tyoical glacial area in the Tibetan Plateau[J]. Environmental Science, 2016, 37(2): 482 - 489. |
孙学军, 王康, 郭军明, 等. 青藏高原内陆典型冰川区“冰川 - 径流”汞传输过程[J]. 环境科学, 2016, 37(2): 482 - 489. | |
25 | Hodson A J, Mumford P N, Kohler J, et al. The High Arctic glacial ecosystem: new insights from nutrient budgets[J]. Biogeochemistry, 2005, 72(2): 233 - 256. |
26 | Pande K, Padia J T, Ramesh R, et al. Stable isotope systematics of surface water bodies in the Himalayan and Trans-Himalayan (Kashmir) region[J]. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 2000, 109(1): 109 - 115. |
27 | Zhang Baoxiang, Zhang Chao. Progress on Hydrogeochemical Method Applied in Groundwater Study[J]. Yellow River, 2019, 41(10): 135 - 142. |
张保祥, 张超. 水文地球化学方法在地下水研究中的应用综述[J]. 人民黄河, 2019, 41(10): 135 - 142. | |
28 | Yin Guan, Wang Xiaodan, Gao Zhiyou, et al. Study of the hydrology of glacial runoff in Hailuogou Valley, Gongga Mountain by means ofisotopic tracing[J]. Journal of Glaclology and Geocryology, 2008, 30(3): 365 - 372. |
尹观, 王小丹, 高志友, 等. 贡嘎山海螺沟冰川径流水文规律的同位素示踪研究[J]. 冰川冻土, 2008, 30(3): 365 - 372. | |
29 | Kumar N, Ramanathan A L, Tranter M, et al. Switch in chemical weathering caused by the mass balance variability in a Himalayan glacierized basin: a case of Chhota Shigri Glacier[J]. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 2019, 64(2): 179 - 189. |
30 | Wei Ting, Dong Zhiwei, Kang Shichang, et al. Atmospheric deposition and contamination of trace elements in snowpacks of mountain glaciers in the northeastern Tibetan Plateau[J]. Science of the Total Environment, 2019, 689: 754 - 764. |
31 | Zhao Guang, Li Wei, Li Feng, et al. Hydrochemistry of waters in snowpacks, lakes and streams of Mt. Dagu, eastern of Tibet Plateau[J]. Science of the Total Environment, 2018, 610: 641 - 650. |
32 | Wang Jian, Ding Yongjian, Xu Junli, et al. Hydrochemical characteristic analysis of melting water flow in Keqikaer Glacier, Tianshan (West) Mountains[J]. Environmental Science, 2006, 27(7): 1305 - 1311. |
王建, 丁永建, 许君利, 等. 西天山科其喀尔冰川消融径流的水化学分析[J]. 环境科学, 2006, 27(7): 1305 - 1311. | |
33 | Zhu Guofeng, Pu Tao, He Yuanqing, et al. Chemical composition and dailyvariation of melt water during ablation season in monsoonal temperate glacier region: Acase study of Baishui Glacier NO.1[J]. Environmental Science, 2012, 33(12): 4300 - 4306. |
朱国锋, 蒲焘, 何元庆, 等. 典型季风型温冰川消融期融水化学日变化特征[J]. 环境科学, 2012, 33(12): 4300 - 4306. | |
34 | Wang Caixia, Zhang Jie, Dong Zhiwen, et al. Glacier meltwater runoff process analysis based on δD and δ18O isotope and chemistry in the Laohugou glacier basin of the Qilian Mountains[J]. Arid Land Geography, 2015, 38(05): 927 - 935. |
王彩霞, 张杰, 董志文, 等. 基于氢氧同位素和水化学的祁连山老虎沟冰川区径流过程分析[J]. 干旱区地理, 2015, 38(5): 927 - 935. | |
35 | Song Lingling, Tian Qing, Li Zongjie, et al. Hydrochemiacl characteristics of melt-water in the Yuzhu Peak Glacier, Kunlun Mountains[J]. Environmental Chemistry, 2019, 38(8): 1864 - 1871. |
宋玲玲, 田青, 李宗杰, 等. 昆仑山玉珠峰冰川冰雪融水水化学特征分析[J]. 环境化学, 2019, 38(8): 1864 - 1871. | |
36 | Li Xiangying, Ding Yongjian, Han Tianding, et al. Seasonal controls of meltwater runoff chemistry and chemical weathering at Urumqi Glacier No.1 in central Asia[J]. Hydrological Processes, 2019: 3258 - 3281. |
37 | Li Xiangying, Ding Yonglian, Liu Qiao, et al. Intense Chemical Weathering at Glacial Meltwater-Dominated Hailuogou Basin in the Southeastern Tibetan Plateau[J]. Water, 2019, 11(6): 22. |
38 | Yan Chongyu, Zeng Chen, Shi Xiaonan, et al. Hydrochemical characteristics and controlling facters of the glacierized and non-glacier runoff in the Kaltamac Glacier area of Muztaata Mountain[J]. Arid Land Geography, 2018, 41(6): 1214 - 1224. |
闫崇宇, 曾辰, 史晓楠, 等. 慕士塔格山卡尔塔马克冰川补给径流与非冰川补给径流水化学特征及主控因素研究[J]. 干旱区地理, 2018, 41(6): 1214 - 1224. | |
39 | Wang Jian, Ding Yongjian, Xu Min, et al. Observations and study of the CO2 flux in the debris of the Koxkar glacier, Tianshan Mts., China[J]. Arid Land Geography, 2018, 41(6): 1160 - 1168. |
王建, 丁永建, 许民, 等. 天山南坡科其喀尔冰川作用区CO2通量观测研究[J]. 干旱区地理, 2018, 41(6): 1160 - 1168. | |
40 | Wu Xiaobo. Diurnal and seasonal variation of glacier meltwater hydrochemistry in Qiyi glacierized catchment in Qilian Mountains, Northwest China: implication for chemical weathering[J]. Journal of Mountain Science, 2018, 15(5): 1035 - 1045. |
41 | Wang Lijie, Zeng Chen, Wang Guanxing, et al. Chemical characteristics and impact factors of the Drem-tso Lake and supplying runoff in the Southern Tibet[J]. Arid Land Geography, 2017, 40(4): 737 - 745. |
王利杰, 曾辰, 王冠星, 等. 西藏山南地区沉错湖泊与径流水化学特征及主控因素初探[J]. 干旱区地理, 2017, 40(4): 737 - 745. | |
42 | Li Xiangying, He Xiaobao, Kang Sshichang, et al. Diurnal dynamics of minor and trace elements in stream water draining Dongkemadi Glacier on the Tibetan Plateau and its environmental implications[J]. Journal of Hydrology, 2016, 541: 1104 - 1118. |
43 | Tian Yuan, Yu Chengqun, Luo Kunli, et al. Hydrochemical characteristics and element contents of natural waters in Tibet, China[J]. Journal of Geographical Sciences, 2015, 25(6): 669 - 686. |
44 | Liu Lashan, Ren Jiawen, Qin Dahe . Chemical characteristics at the head of Rongbuk River on Mt. Everest[J]. Envrionmental Science, 2002, 21(5): 69 - 63. |
刘腊山, 任贾文, 秦大河. 珠穆朗玛峰绒布河源区河水化学特征[J]. 环境科学, 2000, 21(5): 59 - 63. | |
45 | Wu Xiaobo, Wang Ninglian, Li Quanlian. Diurnal variation of meltwater hydrochemistry in Qiyi glacier[J]. Journal of Glacilogy and Geocryology, 2009, 31(6): 1080 - 1085. |
武小波, 王宁练, 李全莲. 七一冰川消融末期融水化学日变化特征[J]. 冰川冻土, 2009, 31(6): 1080 - 1085. | |
46 | Feng Fang, Feng Qi, Liu Dexian, et al. A study of hydrochemical characteristics of meltwater runoff of the Urumqi Glacier No.1, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 183 - 191. |
冯芳, 冯起, 刘贤德, 等. 天山乌鲁木齐河源1号冰川融水径流水化学特征研究[J]. 冰川冻土, 2014, 36(1): 183 - 191. | |
47 | Zhao Aifang, Zhang Mingjun, Li Zhongqin, et al. Hydrochemical characteristic in the Glacier No. 72 of Qingbingtan, Tomur Peak[J]. Environmental Science, 2012, 33(5): 1485 - 1490. |
赵爱芳, 张明军, 李忠勤, 等. 托木尔峰青冰滩72号冰川径流水化学特征研究[J]. 环境科学, 2012, 33(5): 1485 - 1490. | |
48 | Yan Luxia, Sun Meiping, Yao Xiaojun, et al. Lake water in the Tibet Plateau: Quality change and current status evaluation[J]. Acta Scientiae Circumstantiae, 2018, 38(3): 900 - 910. |
49 | Dong Zhiwen, Kang Shichang, Qin Dahe, et al. Temporal and diurnal analysis of trace elements in the Cryospheric water at remote Laohugou basin in northeast Tibetan Plateau[J]. Chemosphere, 2017, 171: 386 - 398. |
50 | Li Xiangying, Qin Dahe, Jing Zhefan, et al. Diurnal variation of trace elements in qiyi glacier basin of qilian mountain and its influence on unfiltered after sampling[J]. Science China: Earth Science, 2012, 42(11): 1745 - 1756. |
李向应, 秦大河, 井哲帆, 等. 祁连山七一冰川流域微量元素的日变化及采样后未过滤的影响[J]. 中国科学: 地球科学, 2012, 42(11): 1745 - 1756. | |
51 | Mitchell A C, Brown G H. Diurnal hydrological-physicochemical controls and sampling methods for minor and trace elements in an Alpine glacial hydrological system[J]. Journal of Hydrology, 2007, 332(1-2): 123 - 143. |
52 | Singh A T, Laluraj C M, Sharma P, et al. Export fluxes of geochemical solutes in the meltwater stream of Sutri Dhaka Glacier, Chandra basin, Western Himalaya[J]. Environmental Monitoring and Assessment, 2017, 189(11): 555. |
53 | Fortner S K, Lyons W B. Dissolved trace and minor elements in cryoconite holes and supraglacial streams, Canada Glacier, Antarctica[J]. Frontiers in Earth Science, 2018, 6: 9. |
54 | Li Xiangying, Qin Dahe, Jing Zhefan, et al. Diurnal hydrological controls and non-filtration effects on minor and trace elements in stream water draining the Qiyi Glacier, Qilian Mountain[J]. Science China-Earth Sciences, 2013, 56(1): 81 - 92. |
55 | Dong Zhiwen, Kang Shichang, Qin Dahe, et al. Temporal and diurnal analysis of trace elements in the Cryospheric water at remote Laohugou basin in northeast Tibetan Plateau[J]. Chemosphere, 2017, 171: 386 - 398. |
56 | Huang Ju, Li Yyuefang, Li Zhen, et al. Spatial variations and sources of trace elements in recent snow from glaciers at the Tibetan Plateau[J]. Environmental Science and Pollution Research, 2018, 25(8): 7875 - 7883. |
57 | Li Yuefang, Li Zhen, Cozzi G, et al. Signals of pollution revealed by trace elements in recent snow from mountain glaciers at the Qinghai-Tibetan Plateau[J]. Chemosphere, 2018, 200: 523 - 531. |
58 | Pu Tao. Hydrologic process of typical oceanic glacier watershed based on hydrochemistry and isotopes[D]. Lanzhou: Lanzhou University, 2013. [蒲焘, 基于水化学与同位素的典型海洋型冰川流域水文过程研究[D], 兰州: 兰州大学, 2013.] |
59 | Song Mengyuan, Li Zhongqin, Jin Shuang, et al. Characteristics of water isotopes and hydrograph separation in the Glacier No. 72 of Qingbingtan, Tomur Peak[J]. Journal of Arid Land Resources and Environment, 2015, 29(3): 156 - 160. |
宋梦媛, 李忠勤, 金爽, 等. 托木尔峰青冰滩72号冰川流域同位素特征及径流分割研究[J]. 干旱区资源与环境, 2015, 29(3): 156 - 160. | |
60 | Yang Yuzhong, Wu Qingbai, Jin Huijun. Evolutions of water stable isotopes and the contributions of cryosphere to the alpine river on the Tibetan Plateau[J]. Environmental Earth Sciences, 2016, 75(1): 11. |
61 | Liu Fengjing, Wlliams Mark, Cheng Guodong, et al. Hydrochemical process of snowmelt and stream water in Urumqi River, Tianshan Mountains[J]. Journal of Glaclology and Geocryology, 1999, 21(3): 213 - 219. |
刘凤景, Wlliams Mark, 程国栋, 等. 天山乌鲁木齐河融雪和河川径流的水文化学过程[J]. 冰川冻土, 1999, 21(3): 213 - 219. | |
62 | Li Cuilin, Hou Shugui, Qin Dahe. Spatial differences of hydro-chemical and its control factors of the headwater runoff in the Urumqi River, Tianshan Mountains[J]. Journal of Glaclology and Geocryology, 2003, 25(1): 72 - 76. |
李翠林, 侯书贵, 秦大河. 天山乌鲁木齐河源径流水文化学空间差异及其控制因素[J]. 冰川冻土, 2003, 25(1): 72 - 76. | |
63 | Feng Fang, Li Zhonqin, Jin Shuang, et al. Hydrochemical characteristics and solute dynamics of meltwater runoff of Urumqi Glacier No.1, eastern Tianshan, northwest China[J]. Journal of Mountain Science, 2012, 9(4): 472 - 482. |
64 | Bisht H, Arya P C, Kumar K. Hydro-chemical analysis and ionic flux of meltwater runoff from Khangri Glacier, West Kameng, Arunachal Himalaya, India[J]. Environmental Earth Sciences, 2018, 77(16): 16. |
65 | Zhang Qian, Jiao Shulin, Liang Hong, et al. Review and prospect of river hydrochemical researches in karst regions of Southwest China[J]. Geographical and Environmental Sciences, 2017, 35(3): 36 - 43. |
张倩, 焦树林, 梁虹, 等. 西南喀斯特地区河流水化学研究综述与展望[J]. 贵州科学, 2017, 35(3): 36 - 43. | |
66 | Qu Bin, Zhang Yulan, Kang Shichang, et al. Water quality in the Tibetan Plateau: major ions and trace elements in rivers of the "Water Tower of Asia"[J]. Science of the Total Environment, 2019, 649: 571 - 581. |
67 | Bisht H, Arya P C, Kumar K. Hydro-chemical analysis and ionic flux of meltwater runoff from Khangri Glacier, West Kameng, Arunachal Himalaya, India[J]. Environmental Earth Sciences, 2018, 77(16): 598. |
68 | Brighenti S, Tolotti M, Bruno M C, et al. After the peak water: the increasing influence of rock glaciers on alpine river systems[J]. Hydrological Processes, 2019, 33(21): 2804 - 2823. |
69 | Tang Wenkui, Tao Zhen, Gao Quanzhou, et al. Biogeochemical processes of main ions and dissolution of inorganic carbon in Guijiang[J]. Environmental Science, 2014, 35(6): 2099 - 2117. |
唐文魁, 陶贞, 高全洲, 等. 桂江主要离子及溶解无机碳的生物地球化学过程[J]. 环境科学, 2014, 35(6): 2099 - 2107. | |
70 | Zhao Jichang, Geng Dongqing, Peng Jianhua, et al. Origin of major elements and Sr isotope for river water in Yangtze River source area[J]. Hydrogeology Engineering Geology, 2003, 30(2): 89 - 93. |
赵继昌, 耿冬青, 彭建华, 等. 长江河源区的河水主要元素与Sr同位素来源[J]. 水文地质工程地质, 2003, 30(2): 89 - 93. | |
71 | Mitchell A C, Brown G H, Fuge R. Minor and trace elements as indicators of solute provenance and flow routing in a subglacial hydrological system[J]. Hydrological Processes, 2006, 20(4): 877 - 897. |
72 | Wei Wenhao, Ma R, Sun Ziyong, et al. Effects of mining activities on the release of heavy metals (HMs) in a typical mountain headwater region, the Qinghai-Tibet Plateau in China[J]. International Journal of Environmental Research and Public Health, 2018, 15(9): 19. |
73 | Li Rui, Wu Yanhong, Bing Haijian, et al. Source identification of lead in soils on the easternslope of Gongga Mountain, Eastern Tibetan Plateau[J]. Research of Environmental Sciences, 2015, 28(9): 1439 - 1448. |
74 | Bing Haijian, Wu Yanhong, Zhou Jun, et al. Historical trends of anthropogenic metals in Eastern Tibetan Plateau as reconstructed from alpine lake sediments over the last century[J]. Chemosphere, 2016, 148: 211 - 219. |
75 | Zhang Hua, Yin Runsheng, Feng Xinbin, et al. Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures[J]. Scientific Reports, 2013, 3: 8. |
76 | Kumar V, Parihar R D, Sharma A, et al. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses[J]. Chemosphere, 2019, 236: 14. |
77 | Tripathee L, Kang Shichang, Huang Jie, et al. Concentrations of trace elements in wet deposition over the central Himalayas, Nepal[J]. Atmospheric Environment, 2014, 95: 231 - 238. |
78 | Singh V B, Keshari A K, Ramanathan A L. Major ion chemistry and atmospheric CO2 consumption deduced from the Batal glacier, Lahaul-Spiti valley, Western Himalaya, India [J]. Environment Development and Sustainability, 2019. |
79 | Fortner S K, Tranter M, Fountain A, et al. The geochemistry of supraglacial streams of Canada Glacier, Taylor Valley (Antarctica), and their evolution into proglacial waters[J]. Aquatic Geochemistry, 2005, 11(4): 391 - 412. |
80 | Carling G T, Rupper S B, Fernandez D P, et al. Effect of atmospheric deposition and weathering on trace element concentrations in glacial meltwater at Grand Teton National Park, Wyoming, USA[J]. Arctic Antarctic and Alpine Research, 2017, 49(3): 427 - 440. |
81 | Sun Shiwei, Kang Shichang, Guo Junming, et al. Insights into mercury in glacier snow and its incorporation into meltwater runoff based on observations in the southern Tibetan Plateau[J]. Journal of Environmental Sciences, 2018, 68: 13. |
82 | Wang Jian, Ding Yongjian, Xu Junli, et al. Hydrochemical characteristic analysis of melting water flow in keqikaer glacier, Tianshan (West) Mountains[J]. Environmental Science, 2006, 27(7): 1305 - 1311. |
王建, 丁永建, 许君利, 等. 西天山科其喀尔冰川消融径流的水化学分析[J]. 环境科学, 2006, 27(7): 1305 - 1311. |
[1] | 孟雅丽, 段克勤, 尚溦, 李双双, 邢莉, 石培宏. 基于CMIP6模式数据的1961—2100年青藏高原地表气温时空变化分析[J]. 冰川冻土, 2022, 44(1): 24-33. |
[2] | 柴乐, 张威, 刘亮, 马瑞丰, 唐倩玉, 李亚鹏, 乔静茹. 青藏高原东南部他念他翁山全新世早中期冰进事件研究[J]. 冰川冻土, 2022, 44(1): 307-315. |
[3] | 张怡, 段克勤, 石培宏. 1979—2100年青藏高原夏季大气0 ℃层高度变化分析[J]. 冰川冻土, 2022, 44(1): 34-45. |
[4] | 达伟, 王书峰, 沈永平, 陈安安, 毛炜峄, 张伟. 1957—2019年昆仑山北麓车尔臣河流域水文情势及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 46-55. |
[5] | 刘广岳, 邹德富, 杨斌, 杜二计, 周华云, 肖瑶, 赵林, 谭昌海, 胡国杰, 庞强强, 王武, 孙哲, 朱小凡, 殷秀峰, 汪凌霄, 李智斌, 谢昌卫. 青藏高原腹地各拉丹冬南北坡多年冻土考察初步结果[J]. 冰川冻土, 2022, 44(1): 83-95. |
[6] | 罗京, 牛富俊, 林战举, 刘明浩, 尹国安, 高泽永. 青藏高原多年冻土区热融滑塌发育特征及规律[J]. 冰川冻土, 2022, 44(1): 96-105. |
[7] | 除多,扎西顿珠,次丹玉珍. NOAA IMS雪冰产品在青藏高原积雪监测中的适用性分析[J]. 冰川冻土, 2021, 43(6): 1659-1672. |
[8] | 卓嘎,罗布,巴桑曲珍. 青藏高原那曲中部土壤温湿分布特征[J]. 冰川冻土, 2021, 43(6): 1704-1717. |
[9] | 龚强,晁华,朱玲,蔺娜,于秀晶,刘春生,汪宏宇. 东北地区地温和冻结深度时空特征的细化分析[J]. 冰川冻土, 2021, 43(6): 1782-1793. |
[10] | 王世金,魏彦强,牛春华,张云飞. 青藏高原多灾种自然灾害综合风险管理[J]. 冰川冻土, 2021, 43(6): 1848-1860. |
[11] | 李若晨,申保收,武小波,杨方社,郭忠明. 青藏高原典型山地冰川中痕量元素的空间分布和来源分析[J]. 冰川冻土, 2021, 43(5): 1277-1289. |
[12] | 曹瑜,游庆龙,蔡子怡. 1961—2019年青藏高原中东部夏季强降水与大尺度环流的关系[J]. 冰川冻土, 2021, 43(5): 1290-1300. |
[13] | 王一博,吕明侠,赵海鹏,高泽永. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1301-1311. |
[14] | 段群滔,罗立辉. 人类活动强度空间化方法综述与展望[J]. 冰川冻土, 2021, 43(5): 1582-1593. |
[15] | 刘艺阗, 姚济敏, 赵林, 肖瑶, 乔永平, 史健宗. 青藏高原唐古拉多年冻土区冻融循环过程中的能量平衡特征[J]. 冰川冻土, 2021, 43(4): 1073-1082. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000