冰川冻土 ›› 2021, Vol. 43 ›› Issue (2): 555-567.doi: 10.7522/j.issn.1000-0240.2021.0043
收稿日期:
2020-09-14
修回日期:
2020-12-07
出版日期:
2021-04-30
发布日期:
2021-05-18
通讯作者:
余国安
E-mail:lujy.18s@igsnrr.ac.cn;yuga@igsnrr.ac.cn
作者简介:
鲁建莹, 硕士研究生, 主要从事河流地貌及地质灾害研究. E-mail: lujy.18s@igsnrr.ac.cn
基金资助:
Jianying LU1,2(), Guo’an YU1(
), Heqing HUANG1
Received:
2020-09-14
Revised:
2020-12-07
Online:
2021-04-30
Published:
2021-05-18
Contact:
Guo’an YU
E-mail:lujy.18s@igsnrr.ac.cn;yuga@igsnrr.ac.cn
摘要:
全球范围内高海拔或高纬度山区(以下简称高山区),尤其高山冰川冻土急剧消退地区,广泛发育泥石流灾害。在全球气候变暖的大背景下,高山区泥石流的现实危害和潜在风险日渐凸显。与其他环境条件下泥石流过程主要由降雨激发不同,高山区泥石流的暴发多受降雨和温度条件的共同影响,其形成机制更为复杂,预测预警十分困难,因此加强高山区泥石流研究具有重要的科学价值和实践意义。通过述评近期高山区泥石流起动研究的主要进展,包括泥石流暴发与气象条件的关系,典型高山区泥石流事件成因,冰川冻土体消融破坏机制,以及冰碛土泥石流起动特征,认为未来高山区泥石流研究应加强高时空分辨率气象数据获取和物源动态变化分析研判,并从动力学机制层面进一步明晰高山区泥石流起动条件和发育过程。
中图分类号:
鲁建莹, 余国安, 黄河清. 气候变化影响下高山区泥石流形成机制研究及展望[J]. 冰川冻土, 2021, 43(2): 555-567.
Jianying LU, Guo’an YU, Heqing HUANG. Research and prospect on formation mechanism of debris flows in high mountains under the influence of climate change[J]. Journal of Glaciology and Geocryology, 2021, 43(2): 555-567.
表2
近年国内外报道的典型高山区泥石流事件及成因/机制"
地区 | 区域/流域 | 暴发时间 | 泥石流规模/104 m3 | 成因/机制 | 文献来源 |
---|---|---|---|---|---|
亚洲 | 中国藏东南天摩沟 | 2007-09-04 2010-07-25 2010-09-03 2018-07-11 | 10~100 | 升温和降雨触发冰崩、滑坡,沟道短暂形成堰塞体后溃决 | [ |
中国藏东南色东普沟 | 2018-10-17 2018-10-29 | 约1 500 约700 | 升温和2017年米林6.9级地震共同引发冰崩 | [ | |
印度背阿坎德邦Gangotri冰川 | 2017-07-16/07-19 | 790±10 | 冰川退缩、冰碛物消融失稳、连续降雨等多因素共同作用触发冰碛堰塞湖溃决 | [ | |
北美洲 | 美国华盛顿州喀斯喀特山脉Rainier山 | 2006-11-06/11-07 | 约5 | 强降雨,起动区沟蚀+流通区侧蚀 | [ |
加拿大不列颠哥伦比亚省Meager山火山区 | 2010-08-06 | 约4 850 | 山体滑坡 | [ | |
欧洲 | 瑞士Zermatt山谷 | 1864—2008年(共118场) | 5—8月,短时强暴雨引发;9—10月,长时间暴雨引发 | [ | |
瑞士Ritigraben岩石冰川 | 1958—2005年(共47场) | 0.1~2.7 | 冰川冻土消融退化,松散堆积物形成、补给和蠕移 | [ | |
瑞士Bondasca山谷 | 2012-07-05/09-24(共4场) | 2011年冬季岩崩产生大量物源,2012年汛期降雨激发形成泥石流 | [ | ||
2017-08-23/08-25(共15场) | 54.5±5 (第1场规模) | 2017年岩崩产生巨量物源,泥石流过程无降水贡献 | [ | ||
意大利、法国、瑞士三国(17个位置) | 1983—2003年 (共17场,I类9场,II类2场,III类6场) | I类<80 II类<10 III类<15 | I类:长时强降雨,坡积物水分饱和失稳;II类:短时暴雨破坏冰川径流系统;III类:冰湖溃决或冰雪融化 | [ | |
法国阿尔卑斯山区 | 1961—2000年 | 强降雨 | [ | ||
挪威Fjærland山 | 2004-05-08 | 24 | 冰湖溃决 | [ | |
俄罗斯高加索山区Kolka-Karmadon | 2002-09-20 | 10 000 | 岩体/冰体滑坡 | [ | |
冰岛Gleidarhjalli地区 | 1999-06-10/06-12 | 约0.3 | 冰雪快速消融 | [ | |
挪威Fjærland | 2004-05-08 | 24 | 冰湖溃决 | [ | |
南美洲 | 阿根廷巴塔哥尼亚安第斯山脉Rio Manso冰川河谷 | 2009-05 | 洪峰流量 4 100 m3⋅s-1 | 强降雨,冰碛坝漫顶,冰湖溃决 | [ |
秘鲁Cordillera Blanca的Rio Santa山谷 | 1962-01-10 1970-05-31 | 约1 300 约5 300 | 冰崩、岩崩引发 地震触发冰崩、岩崩 | [ |
1 | Du Rongheng, Zhang Shucheng. Characteristics of glacial mud-flows in south-eastern Qinghai-Xizang Plateau[J]. Journal of Glaciology and Geocryology, 1981, 3(3): 10-18. |
杜榕桓, 章书成. 西藏高原东南部冰川泥石流的特征[J]. 冰川冻土, 1981, 3(3): 10-18. | |
2 | Xu Daoming, Feng Qinghua. Studies on catastrophes of glacial debris flow and glacial lake outburst flood in China[J]. Journal of Glaciology and Geocryology, 1988, 10(3): 284-289. |
徐道明, 冯清华. 冰川泥石流与冰湖溃决灾害研究[J]. 冰川冻土, 1988, 10(3): 284-289. | |
3 | Walter F, Amann F, Kos A, et al. Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows[J/OL]. Geomorphology, 2020, 351 [2021-04-06]. . |
4 | Li Honglian, Cai Xiangxing. The glacial debris flow of China[J]. Bulletin of Soil and Water Conservation, 1989, 9(6): 1-9. |
李鸿琏, 蔡祥兴. 中国冰川泥石流的一些特征[J]. 水土保持通报, 1989, 9(6): 1-9. | |
5 | Liu Jiankang, Zhang Jiajia, Gao Bo, et al. An overview of glacial lake outburst flood in Tibet, China[J]. Journal of Glaciology and Geocryology, 2019, 41(6): 1335-1347. |
刘建康, 张佳佳, 高波, 等. 我国西藏地区冰湖溃决灾害综述[J]. 冰川冻土, 2019, 41(6): 1335-1347. | |
6 | Chiarle M, Iannotti S, Mortara G, et al. Recent debris flow occurrences associated with glaciers in the Alps[J]. Global and Planetary Change, 2007, 56: 123-136. |
7 | Yongbo Tie, Li Zongliang. Progress in the study of glacial debris flow mechanisms[J]. Advances in Water Science, 2010, 21(6): 861-866. |
铁永波, 李宗亮. 冰川泥石流形成机理研究进展[J]. 水科学进展, 2010, 21(6): 861-866. | |
8 | Wang T, Wu T, Wang P, et al. Spatial distribution and changes of permafrost on the Qinghai-Tibet Plateau revealed by statistical models during the period of 1980 to 2010[J]. Science of the Total Environment, 2019, 650: 661-670. |
9 | Yao T, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2: 663-667. |
10 | Wu Guangjian, Yao Tandong, Wang Weicai, et al. Glacial hazards on Tibetan Plateau and surrounding alpines[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1285-1292. |
邬光剑, 姚檀栋, 王伟财, 等. 青藏高原及周边地区的冰川灾害[J]. 中国科学院院刊, 2019, 34(11): 1285-1292. | |
11 | Zemp M, Haeberli W, Hoelzle M, et al. Alpine glaciers to disappear within decades?[J/OL]. Geophysical Research Letters, 2006, 33 [2021-04-06]. . |
12 | Harris C, Arenson L U, Christiansen H H, et al. Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses[J]. Earth-Science Reviews, 2009, 92(3/4): 117-171. |
13 | Moore R D, Fleming S W, Menounos B, et al. Glacier change in western North America: influences on hydrology, geomorphic hazards and water quality[J]. Hydrological Processes, 2009, 23(1): 42-61. |
14 | Quincey D J, Glasser N F. Morphological and ice-dynamical changes on the Tasman Glacier, New Zealand, 1990-2007[J]. Global and Planetary Change, 2009, 68(3): 185-197. |
15 | Evans S G, Delaney K B. Catastrophic mass flows in the mountain glacial environment[M/OL]// Snow and ice-related hazards, risks and disasters. New York: Academic Press, 2015: 563-606. |
16 | Cui Peng, Guo Xiaojun, Jiang Tianhai, et al. Disaster effect induced by Asian Water Tower change and mitigation strategies[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1313-1321. |
崔鹏, 郭晓军, 姜天海, 等. “亚洲水塔”变化的灾害效应与减灾对策[J]. 中国科学院院刊, 2019, 34(11): 1313-1321. | |
17 | Fischer L, Kääb A, Huggel C, et al. Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face[J]. Natural Hazards and Earth System Sciences, 2006, 6: 761-772. |
18 | Gruber S, Haeberli W. Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change[J/OL]. Journal of Geophysical Research, 2007, 112 [2021-04-06]. . |
19 | Huggel C, Caplan-Auerbach J, Wessels R. Recent extreme avalanches: triggered by climate change?[J]. Eos, Transactions American Geophysical Union, 2008, 89(47): 469-470. |
20 | Korup O, Clague J J. Natural hazards, extreme events, and mountain topography[J]. Quaternary Science Reviews, 2009, 28: 977-990. |
21 | Deline P, Gruber S, Delaloye R. Ice loss and slope stability in high-mountain regions[M/OL]// Snow and ice-related hazards, risks and disasters. New York: Academic Press, 2015: 521-561. |
22 | Decaulne A, Saemundsson T, Petursson O. Debris flows triggered by rapid snowmelt in the Gleidarhjalli area, northwestern Iceland[J]. Geografiska Annaler, 2005, 87: 487-500. |
23 | Lu Anxin, Deng Xiaofeng, Zhao Shangxue, et al. Cause of debris flow in Guxiang valley in Bomi, Tibet Autonomous Region, 2005[J]. Journal of Glaciology and Geocryology, 2006, 28(6): 956-960. |
鲁安新, 邓晓峰, 赵尚学, 等. 2005年西藏波密古乡沟泥石流暴发成因分析[J]. 冰川冻土, 2006, 28(6): 956-960. | |
24 | Hu Guisheng, Chen Ningsheng, Deng Mingfeng, et al. Classification and initiation conditions of debris flows in Linzhi area, Tibet[J]. Bulletin of Soil and Water Conservation, 2011, 31(2): 193-198. |
胡桂胜, 陈宁生, 邓明枫, 等. 西藏林芝地区泥石流类型及形成条件分析[J]. 水土保持通报, 2011, 31(2): 193-198. | |
25 | Yongbo Tie. Source converge process and hazards of moraine supply debris flow under the condition of freezing and thawing[J]. Journal of Catastrophology, 2012, 27(4): 12-16. |
铁永波. 冻融条件下冰碛补给型泥石流物源汇集过程与灾变初探[J]. 灾害学, 2012, 27(4): 12-16. | |
26 | Legg N, Meigs A, Grant G, et al. Debris flow initiation in proglacial gullies on Mount Rainier, Washington[J]. Geomorphology, 2014, 226: 249-260. |
27 | Jiang Jintao, Yongbo Tie, Wang Shuai. Study on the forming mechanism of moraine-supplied debris flow: take Xiaohezi valley in the east slope of Gongga Mountain as an example[J]. Journal of Geological Hazards and Environment Preservation, 2016, 27(4): 21-25. |
江金涛, 铁永波, 王帅. 冰碛补给型泥石流形成机制研究: 以贡嘎山东坡小河子沟为例[J]. 地质灾害与环境保护, 2016, 27(4): 21-25. | |
28 | Wei R, Zeng Q, Davies T, et al. Geohazard cascade and mechanism of large debris flows in Tianmo gully, SE Tibetan Plateau and implications to hazard monitoring[J]. Engineering Geology, 2018, 233: 172-182. |
29 | Kumar A, Bhambri R, Tiwari S K, et al. Evolution of debris flow and moraine failure in the Gangotri Glacier region, Garhwal Himalaya: hydro-geomorphological aspects[J]. Geomorphology, 2019, 333: 152-166. |
30 | Chen Ningsheng, Wang Zheng, Tian Shufeng, et al. Study on debris flow process induced by moraine soil mass failure[J]. Quaternary Sciences, 2019, 39(5): 1235-1245. |
陈宁生, 王政, 田树峰, 等. 冰碛土体起动泥石流的特征研究[J]. 第四纪研究, 2019, 39(5): 1235-1245. | |
31 | Deng Yangxin. Process of accumulation and characteristics of glacial debris flow deposits transformed by Moraine[J]. Acta Sedimentologica Sinica, 1995, 13(4): 37-48. |
邓养鑫. 冰碛转化为冰川泥石流堆积过程及其沉积特征[J]. 沉积学报, 1995, 13(4): 37-48. | |
32 | You Yong. Transporting characteristics of debris flow at Guxiang accumulation fan in Tibet Autonomous Region[J]. Bulletin of Soil and Water Conservation, 2001, 21(2): 28-30. |
游勇. 西藏古乡沟堆积扇泥石流输沙特征[J]. 水土保持通报, 2001, 21(2): 28-30. | |
33 | He Yiping, Hu Kaiheng, Wei Fangqiang, et al. Characteristics of debris flow in Polongzangbu basin of Sichuan-Tibet Highway[J]. Journal of Soil and Water Conservation, 2001(3): 76-80. |
何易平, 胡凯衡, 韦方强, 等. 川藏公路迫隆藏布流域段泥石流活动特征[J]. 水土保持学报, 2001(3): 76-80. | |
34 | Breien H, De Blasio F V, Elverhøi A. Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway[J]. Landslides, 2008, 5(3): 271-280. |
35 | Rebetez M, Lugon R, Baeriswyl P A. Climatic change and debris flows in high mountain regions: the case study of the Ritigraben Torrent (Swiss Alps)[M]// Climatic change at high elevation sites. Dordrecht, the Netherlands: Springer, 1997: 139-157. |
36 | Liu Jiankang, Cheng Zunlan. Meteorology conditions for frequent debris flows from Guxiang valley in Tibet, China[J]. Science Technology and Engineering, 2015, 15(9): 45-50. |
刘建康, 程尊兰. 西藏古乡沟泥石流与气象条件的关系[J]. 科学技术与工程, 2015, 15(9): 45-50. | |
37 | Deng M F, Chen N S, Liu M. Meteorological factors driving glacial till variation and the associated periglacial debris flows in Tianmo Valley, south-eastern Tibetan Plateau[J]. Natural Hazards and Earth System Sciences, 2017, 17(3): 345-356. |
38 | McBean, G, Alekseev G, Chen D, et al. Arctic climate: past and present[M]// Arctic climate impact assessment. Cham, Switzerland: Springer, 2017: 22-60. |
39 | Qin J, Yang K, Liang S, et al. The altitudinal dependence of recent rapid warming over the Tibetan Plateau[J]. Climatic Change, 2009, 97: 321-327. |
40 | Pepin N, Bradley R S, Diaz H F, et al. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change, 2015, 5(5): 424-430. |
41 | Zhu Pingyi, Luo Defu, Kou Yuzhen. Debris flow development trend of Guxiang ravine, Xizang[J]. Mountain Research, 1997, 15(4): 296-299. |
朱平一, 罗德富, 寇玉贞. 西藏古乡沟泥石流发展趋势[J]. 山地研究, 1997, 15(4): 296-299. | |
42 | Hu Kaiheng, Cui Peng, You Yong, et al. Influence of debris supply on the activity of post-quake debris flows[J]. The Chinese Journal of Geological Hazard and Control, 2011, 22(1): 1-6. |
胡凯衡, 崔鹏, 游勇, 等. 物源条件对震后泥石流发展影响的初步分析[J]. 中国地质灾害与防治学报, 2011, 22(1): 1-6. | |
43 | Stoffel M, Lièvre I, Conus D, et al. 400 years of debris-flow activity and triggering weather conditions: Ritigraben, Valais, Switzerland[J]. Arctic, Antarctic, and Alpine Research, 2005, 37(3): 387-395. |
44 | Stoffel M. Magnitude-frequency relationships of debris flows: a case study based on field surveys and tree-ring records[J]. Geomorphology, 2010, 116: 67-76. |
45 | Permos. Permafrost in Switzerland 2014/2015 to 2017/2018: glaciological report permafrost No. 16-19[R]. Bern, Switzerland: Cryospheric Commission of the Swiss Academy of Sciences, 2019: 104. |
46 | Brigger K, Brigger B, Chastonay V, et al. Naturlehrpfad Grächen[M]. Denges: Stiftung, 1993: 60. |
47 | Fux-Anthamatten S. Familien-und Dorfchronik von Grächen 1900-2000[M]. Grächen: Eigenverlag, 2001: 632. |
48 | Willi C, Graf C, Deubelbeiss Y, et al. Methods for detecting channel bed surface changes in a mountain torrent-experiences from the Dorfbach torrent[J]. Geographica Helvetica, 2015, 70(4): 265-279. |
49 | Pavlova I, Jomelli V, Brunstein D, et al. Debris flow activity related to recent climate conditions in the French Alps: a regional investigation[J]. Geomorphology, 2014, 219: 248-259. |
50 | Liang Guangmo. On the debris flow hazards and its countermeasure along south section of Sichuan-Tibet road (the part Tibet)[D]. Chengdu: Southwest Jiaotong University, 2007. |
梁光模. 川藏公路南线(西藏境内)泥石流灾害与防治对策[D]. 成都: 西南交通大学, 2007. | |
51 | Liqun Lü, Wang Zhaoyin, Qi Lijian, et al. Evolution of debris-flow dammed lake at Guxiang gully in Tibet[J]. Journal of Sediment Research, 2015(5): 14-18. |
吕立群, 王兆印, 漆力健, 等. 西藏古乡沟泥石流堰塞湖演化规律[J]. 泥沙研究, 2015(5): 14-18. | |
52 | Li Deji, You Yong. Bursting of the Midui Lake in Bomi, Xizang[J]. Mountain Research, 1992(4): 219-224. |
李德基, 游勇. 西藏波密米堆冰湖溃决浅议[J]. 山地研究, 1992(4): 219-224. | |
53 | Ruren Lü, Li Deji. Debris flow induced by ice lake burst in the Tangbulang gully, Gongbujiangda, Xizang (Tibet)[J]. Journal of Glaciology and Geocryology, 1986, 8(1): 61-71. |
吕儒仁, 李德基. 西藏工布江达县唐不朗沟的冰湖溃决泥石流[J]. 冰川冻土, 1986, 8(1): 61-71. | |
54 | Zeng Qingli. Geohazard chains and mechanism of two debris flows in Tianmo gully, southeast Tibetan[C]// Proceedings of 2016 Challenges and Countermeasures of Sichuan-Tibet Railway Construction. Beijing: China Communications Press, 2017: 257-264. [ [ |
曾庆利. 西藏天摩沟泥石流灾害链过程及致灾机理[C]//“川藏铁路建设的挑战与对策”2016学术交流会论文集. 北京: 人民交通出版社, 2017: 257-264.]] | |
55 | Yang Fuhao. Design of monitoring system for sliding slope body in special environment of Tibet Plateau[D]. Lhasa: Tibet University, 2020. |
杨富豪. 西藏高原特殊环境下滑坡体监测与监控体系设计[D]. 拉萨: 西藏大学, 2020. | |
56 | Yin Yueping. Study on characteristics and disaster reduction of rapid huge landslide on Bomi-Yigong in Tibet[J]. Hydrogeology & Engineering Geology, 2000(4): 8-11. |
殷跃平. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质, 2000(4): 8-11. | |
57 | Ren Jinwei, Shan Xinjian, Shen Jun, et al. Geological characteristics and kinematics of the rock fall-landslide in Yigong, southeastern Tibet[J]. Geological Review, 2001(6): 642-647. |
任金卫, 单新建, 沈军, 等. 西藏易贡崩塌-滑坡-泥石流的地质地貌与运动学特征[J]. 地质论评, 2001(6): 642-647. | |
58 | Deng Mingfeng, Chen Ningsheng, Ding Haitao, et al. The hydrothermal condition and formation mechanism of the group-occurring debris flows in the southeast Tibet in 2007[J]. Journal of Natural Disasters, 2013, 22(4): 128-134. |
邓明枫, 陈宁生, 丁海涛, 等. 2007年西藏东南部群发性泥石流的水热条件及其形成机制[J]. 自然灾害学报, 2013, 22(4): 128-134. | |
59 | Li Yuanling, Wang Junchao, Chen Long, et al. Characteristics and geneses of the group-occurring debris flows along Parlung Zangbo river zone in 2016[J]. Research of Soil and Water Conservation, 2018, 25(6): 397-402. |
李元灵, 王军朝, 陈龙, 等. 2016年帕隆藏布流域群发性泥石流的活动特征及成因分析[J]. 水土保持研究, 2018, 25(6): 397-402. | |
60 | Zou Renzhou, Zhang Jiajia, Wang Junchao, et al. The restricting factors and characteristics of debris flow fans of Bomi-Suotong village section of Palong Zangbu river basin in southeast Tibet[J]. Journal of Sichuan Normal University (Natural Science), 2018, 41(3): 419-426. |
邹任洲, 张佳佳, 王军朝, 等. 藏东南帕隆藏布流域波密县城至索通泥石流堆积扇形成的制约因素与特征[J]. 四川师范大学学报(自然科学版), 2018, 41(3): 419-426. | |
61 | Xia Yuanzhi. The research of distribution and formation for debris flow due to break of glacier lake in the Ranwu-Peilong sectionof the Sichuan-Tibet[D]. Chongqing: Chongqing Jiaotong University, 2012. |
夏远志. 川藏公路南线然乌至培龙段冰湖溃决泥石流分布规律及形成机制研究[D]. 重庆: 重庆交通大学, 2012. | |
62 | Zhang Binbin. Study on debris flow characteristics in temperate glacier area of Pallon Tsangpo[D]. Chengdu: Southwest Jiaotong University, 2016. |
张斌斌. 帕隆藏布流域海洋性冰川区泥石流特征研究[D]. 成都: 西南交通大学, 2016. | |
63 | Qi Yunlong, Deng Mingfeng. Triggering mechanism of debris flows in Jiurong valley in Parlung Zangbo, Southeastern Tibet[J]. Journal of Catastrophology, 2019, 34(3): 123-127. |
齐云龙, 邓明枫. 川藏公路波密段九绒沟泥石流形成机制研究[J]. 灾害学, 2019, 34(3): 123-127. | |
64 | Wang Weiyu, Li Jun, Zhao Yuandi. Study on the relationship between rainfall frequency and mudslide outbreak frequency: taking the mudslides in Zhamunonggou, Tibet, on August 2015 as an example[J]. Journal of Gansu Sciences, 2020, 32(1): 60-65. |
王伟宇, 李俊, 赵苑迪. 降雨频率与泥石流暴发频率关系研究: 以2015年8月西藏扎木弄沟泥石流为例[J]. 甘肃科学学报, 2020, 32(1): 60-65. | |
65 | Zhang Bingxian. Evolution process and disaster prevention enlightenment of debris flow dammed lake in Azuonongba, Tibet[J]. Yangtze River, 2019, 50(): 65-67. |
张丙先. 西藏阿左弄巴泥石流堰塞湖演化过程及防灾启示[J]. 人民长江, 2019, 50(): 65-67. | |
66 | Jiang Zefan. Geological hazards, their forming conditions and control along Sichuan-Xizang Highway[J]. Acta Geologica Sichuan, 1996(3): 244-249. |
姜泽凡. 川藏公路沿线地质灾害及其形成条件与整治对策[J]. 四川地质学报, 1996(3): 244-249. | |
67 | Chen Ningsheng, Zhou Haibo, Hu Guisheng. Development rules of debris flow under the influence of climate change in Nyingchi[J]. Advances in Climate Change Research, 2011(6): 412-417. |
陈宁生, 周海波, 胡桂胜. 气候变化影响下林芝地区泥石流发育规律研究[J]. 气候变化研究进展, 2011(6): 412-417. | |
68 | Chleborad A F. Use of air temperature data to anticipate the onset of snowmelt-season landslides: USGS open-file report 98-0124[R]. Reston, VA, USA: US Geological Survey, 1998. |
69 | Jia Yang. The impact mechanism of climate warming on mountain hazards in the southeast of Tibet[D]. Beijing: University of Chinese Academy of Sciences, 2018. |
贾洋. 气候变暖对藏东南山地灾害的影响机制[D]. 北京: 中国科学院大学, 2018. | |
70 | Zhang Shunying. Meteorology conditions and forecasting for debris flows in Guxiang valley[J]. Journal of Glaciology and Geocryology, 1980, 2(2): 41-47. |
张顺英. 西藏古乡沟泥石流暴发的气象条件及预报的可能性[J]. 冰川冻土, 1980, 2(2): 41-47. | |
71 | Xie Tao, Yin Qianfeng, Gao He, et al. Study on early warning model of glacial-rainfall debris flow based on excitation condition and stability of accumulation body[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 884-891. |
谢涛, 尹前锋, 高贺, 等. 基于激发条件和堆积体稳定性的冰川降雨型泥石流预警模型研究[J]. 冰川冻土, 2019, 41(4): 884-891. | |
72 | Delaloye R, Perruchoud E, Avian M, et al. Recent interannual variations of rockglaciers creep in the European Alps[C]// Proceedings of 9th International Conference on Permafrost. Fairbanks, Alaska, USA: University of Alaska Fairbanks, 2008: 343-348. |
73 | Ikeda A, Matsuoka N, Kääb A. Fast deformation of perennially frozen debris in a warm rock glacier in the Swiss Alps: an effect of liquid water[J/OL]. Journal of Geophysical Research, 2008, 113 [2021-04-06]. . |
74 | Haeberli W, Huggel C, Kääb A, et al. The Kolka-Karmadon rock/ice slide of 20 September 2002: an extraordinary event of historical dimensions in North Ossetia, Russian Caucasus[J]. Journal of Glaciology, 2004, 50: 533-546. |
75 | Guthrie R H, Friele P, Allstadt K, et al. The 6 August 2010 Mount Meager rock slide-debris flow, Coast Mountains, British Columbia: characteristics, dynamics, and implications for hazard and risk assessment[J]. Natural Hazards and Earth System Sciences, 2012, 12(5): 1277-1294. |
76 | Evans S G, Bishop N F, Fidel S L, et al. Are-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970[J]. Engineering Geology, 2009, 108(1/2): 96-118. |
77 | Mergili M, Frank B, Fischer J T, et al. Computational experiments on the 1962 and 1970 landslide events at Huascarán (Peru) with r.avaflow: lessons learned for predictive mass flow simulations[J]. Geomorphology, 2018, 322: 15-28. |
78 | Chinese Academy of Sciences. Institute of Mountain Hazards and Environment. Research and prevention of debris flow[M]. Chengdu: Sichuan Science and Technology Press, 1989. |
中国科学院成都山地灾害与环境研究所. 泥石流研究与防治[M]. 成都: 四川科学技术出版社, 1989. | |
79 | Yu Zhongshui, Zhuoga Deqing, Ciren Luobu, et al. Preliminary analysis about the cause of “9.4” debris flow disaster in Tianmogou, Bomi, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2009, 20(1): 6-10. |
余忠水, 德庆卓嘎, 罗布次仁, 等. 西藏波密县天摩沟“9.4”特大泥石流灾害成因初步分析[J]. 中国地质灾害与防治学报, 2009, 20(1): 6-10. | |
80 | Ge Y G, Cui P, Su F H. Case history of the disastrous debris flows of Tianmo watershed in Bomi County, Tibet, China: some mitigation suggestions[J]. Journal of Mountain Science, 2014, 11(5): 1253-1265. |
81 | Qu Yongping, Xiao Jin, Pan Yiwei. Preliminary analysis on formation conditions of glacier debris flow in Southeast Tibet: a case of glacial debris flow in Tianmo Gully[J]. Water Resources and Hydropower Engineering, 2018, 49(12): 177-184. |
屈永平, 肖进, 潘义为. 藏东南地区冰川泥石流形成条件初步分析: 以天摩沟冰川泥石流为例[J]. 水利水电技术, 2018, 49(12): 177-184. | |
82 | Gao Bo, Zhang Jiajia, Wang Junchao, et al. Formation mechanism and disaster characteristics of debris flow in the Tianmo gully in Tibet[J]. Hydrogeology & Engineering Geology, 2019, 46(5): 144-153. |
高波, 张佳佳, 王军朝, 等. 西藏天摩沟泥石流形成机制与成灾特征[J]. 水文地质工程地质, 2019, 46(5): 144-153. | |
83 | Singh R, Shekhar M, Pandey V K, et al. Causes and geomorphological effects of large debris flows in the lower valley areas of the Meru and Gangotri Glaciers, Bhagirathi basin, Garhwal Himalaya (India)[J]. Remote Sensing Letters, 2018, 9(8): 809-818. |
84 | Tong Liqiang, Tu Jienan, Pei Lixin, et al. Preliminary discussion of the frequently debris flow events in Sedongpu Basin at Gyalaperi Peak, Yarlung Zangbo River[J]. Journal of Engineering Geology, 2018, 26(6): 1552-1561. |
童立强, 涂杰楠, 裴丽鑫, 等. 雅鲁藏布江加拉白垒峰色东普流域频繁发生碎屑流事件初步探讨[J]. 工程地质学报, 2018, 26(6): 1552-1561. | |
85 | Liu Chuanzheng, Jietang Lü, Tong Liqiang, et al. Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet[J]. Geology in China, 2019, 46(2): 219-234. |
刘传正, 吕杰堂, 童立强, 等. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究[J]. 中国地质, 2019, 46(2): 219-234. | |
86 | Hu Kaiheng, Zhang Xiaopeng, You Yong, et al. Landslides and dammed lakes triggered by the 2017 Ms6.9 Milin earthquake in the Tsangpo gorge[J]. Landslides, 2019, 16: 993-1001. |
87 | Schneuwly-Bollschweiler M, Stoffel M. Hydrometeorological triggers of periglacial debris flows in the Zermatt valley (Switzerland) since 1864[J/OL]. Journal of Geophysical Research, 2012, 117 [2021-04-22]. . |
88 | Lugon R, Stoffel M. Rock-glacier dynamics and magnitude-frequency relations of debris flows in a high-elevation watershed: Ritigraben, Swiss Alps[J]. Global Planetary Change, 2010, 73: 202-210. |
89 | Baer P, Huggel C, Mcardell B W, et al. Changing debris flow activity after sudden sediment input: a case study from the Swiss Alps[J]. Geology Today, 2017, 33(6): 216-223. |
90 | Jomelli V, Pech V P, Chochillon C, et al. Geomorphic variations of debris flows and recent climatic change in the French Alps[J]. Climatic Change, 2004, 64: 77-102. |
91 | Worni R, Stoffel M, Huggel C, et al. Analysis and dynamic modeling of a moraine failure and glacier lake outburst flood at Ventisquero Negro, Patagonian Andes (Argentina)[J]. Journal of Hydrology, 2012, 444/445: 134-145. |
92 | Iverson R M, Reid M E, Logan M, et al. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment[J]. Nature Geoscience, 2011, 4(2): 116-121. |
93 | Huggel C, Salzmann N, Allen S, et al. Recent and future warm extreme events and high-mountain slope stability[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1919): 2435-2459. |
94 | Murton J B, Peterson R, Ozouf J C. Bedrock fracture by ice segregation in cold regions[J]. Science, 2006, 314: 1127-1129. |
95 | Davies M C R, Hamza O, Lumsden B W, et al. Laboratory measurement of the shear strength of ice filled rock joints[J]. Annals of Glaciology, 2000, 31: 463-467. |
96 | Davies M C R, Hamza O, Harris C. The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuities[J]. Permafrost and Periglacial Processes, 2001, 12: 137-144. |
97 | Krautblatter M, Verleysdonk S, Flores-Orozco A, et al. Temperature-calibrated imaging of seasonal changes in permafrost rock walls by quantitative electrical resistivity tomography (Zugspitze, German/Austrian Alps)[J/OL]. Journal of Geophysical Research, 2010, 115 [2021-04-06]. . |
98 | Krautblatter M, Funk D, Günzel F K. Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space[J]. Earth Surface Processes and Landforms, 2013, 38(8): 876-887. |
99 | Mamot P, Weber S, Schröder T, et al. A temperature- and stress-controlled failure criterion for ice-filled permafrost rock joints[J]. The Cryosphere, 2018, 12(10): 3333-3353. |
100 | Amitrano D, Gruber S, Girard L. Evidence of frost cracking inferred from acoustic emissions in a high alpine rock-wall[J]. Earth and Planetary Science Letters, 2012, 341/344: 86-93. |
101 | Arenson L U, Springman S M. Triaxial constant stress and constant strain rate tests on ice-rich permafrost samples[J]. Canadian Geotechnical Journal, 2005, 42(2): 412-430. |
102 | Arenson L U, Springman S M. Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0 °C[J]. Canadian Geotechnical Journal, 2005, 42(2): 431-442. |
103 | Yamamoto Y, Springman S M. Axial compression stress path tests on artificial frozen soil samples in a triaxial device at temperatures just below 0 °C[J]. Canadian Geotechnical Journal, 2014, 51: 1178-1195. |
104 | Mccoll S T, Davies T R H. Large ice-contact slope movements: glacial buttressing, deformation and erosion[J]. Earth Surface Processes and Landforms, 2012, 38(10): 1102-1115. |
105 | Harris C, Davies M C R, Etzelmüller B. The assessment of potential geotechnical hazards associated with mountain permafrost in a warming global climate[J]. Permafrost and Periglacial Processes, 2001, 12(1): 145-156. |
106 | Haeberli W. Mountain permafrost: research frontiers and a special long-term challenge[J]. Cold Regions Science and Technology, 2013, 96: 71-76. |
107 | Dramis F, Govi M, Guglielmin M, et al. Mountain permafrost and slope instability in the Italian Alps: the Val Pola landslide[J]. Permafrost and Periglacial Processes, 1995, 6(1): 73-81. |
108 | Haeberli W, Huggel C, Kääb A, et al. Permafrost conditions in the starting zone of the Kolka-Karmadon rock/ice slide of 20 September 2002 in North Osetia (Russian Caucasus)[C]// Extended Abstracts of the 8th International Conference on Permafrost. Zürich, Switzerland: International Permafrost Association, 2003: 49-50. |
109 | Kellerer-Pirklbauer A, Lieb G K, Avian M, et al. Climate change and rock fall events in high mountain areas: numerous and extensive rock falls in 2007 at Mittlerer Burgstall, central Austria[J]. Geografiska Annaler Series A: Physical Geography, 2012, 94(1): 59-78. |
110 | Hoelzle M, Mittaz C, Etzelmüller B, et al. Surface energy fluxes and distribution models of permafrost in European mountain areas: an overview of current developments[J]. Permafrost and Periglacial Processes, 2001, 12(1): 53-68. |
111 | Wegmann M, Gudmundsson G, Haeberli W. Permafrost changes and the retreat of Alpine glaciers: a thermal modelling approach[J]. Permafrost and Periglacial Processes, 1998, 9: 23-33. |
112 | Allen S K, Cox S C, Owens I F. Rock avalanches and other landslides in the central Southern Alps of New Zealand: a regional study considering possible climate change impacts[J]. Landslides, 2010, 8(1): 33-48. |
113 | Allen S, Huggel C. Extremely warm temperatures as a potential cause of recent high mountain rockfall[J]. Global Planetary Change, 2013, 107: 59-69. |
114 | Yongbo Tie, Li Zongliang. Formation mechanism of moraine supplied-rainstorm debris flow in Moxi basin[J]. Bulletin of Soil and Water Conservation, 2011, 31(4): 195-199. |
铁永波, 李宗亮. 磨西河流域冰碛补给-暴雨型泥石流形成机制研究[J]. 水土保持通报, 2011, 31(4): 195-199. | |
115 | Yongbo Tie, Xu Ruge, Ba Renji. Source supply process and mechanisms of moraine-supplied debris flow: take Gangou valley in Luding County as an example[J]. Bulletin of Soil and Water Conservation, 2013, 33(1): 77-80. |
铁永波, 徐如阁, 巴仁基 .典型冰碛补给型泥石流物源补给过程与机制研究: 以泸定县干沟为例[J]. 水土保持通报, 2013, 33(1): 77-80. | |
116 | Pan Lei, Wei Xueli, Zhang Yuanfang, et al. Influence of initial water content on glacial debris flow triggering process[J]. Journal of Soil and Water Conservation, 2017, 31(6): 116-122. |
潘蕾, 魏学利, 张远芳, 等. 初始含水率对冰川泥石流的起动影响分析[J]. 水土保持学报, 2017, 31(6): 116-122. | |
117 | Jiang Dewang, Cui Peng, Wang Jiao, et al. Experimental study on the effect of shear strength of moraine soil with fine grain content[J]. Journal of Glaciology and Geocryology, 2019, 41(1): 129-139. |
蒋德旺, 崔鹏, 王姣, 等. 细粒含量对冰碛土抗剪强度影响的实验研究[J]. 冰川冻土, 2019, 41(1): 129-139. | |
118 | Iverson R M. Scaling and design of landslide and debris-flow experiments[J]. Geomorphology, 2015, 244: 9-20. |
119 | Mcardell B W, Bartelt P, Kowalski J. Field observations of basal forces and fluid pore pressure in a debris flow[J/OL]. Geophysical Research Letters, 2007, 34 [2021-04-06]. . |
120 | Mccoy S W, Kean J W, Coe J A, et al. Evolution of a natural debris flow: in situ measurements of flow dynamics, video imagery, and terrestrial laser scanning[J]. Geology, 2010, 38: 735-738. |
121 | Berger C, Mcardell B W, Schlunegger F. Direct measurement of channel erosion by debris flows, Illgraben, Switzerland[J/OL]. Journal of Geophysical Research, 2011, 116 [2021-04-06]. . |
122 | Comiti F, Marchi L, Macconi P, et al. A new monitoring station for debris flows in the European Alps: first observations in the Gadria basin[J]. Natural Hazards, 2014, 73: 1175-1198. |
123 | Cui P, Guo X J, Yan Y, et al. Real-time observation of an active debris flow watershed in the Wenchuan Earthquake area[J]. Geomorphology, 2018, 321: 153-166. |
124 | Hürlimann M, Coviello V, Bel C, et al. Debris-flow monitoring and warning: review and examples[J/OL]. Earth-Science Reviews, 2019, 199 [2021-04-06]. . |
[1] | 谢涛, 尹前锋, 高贺, 陈芳, 慎乃齐, 林达明. 基于激发条件和堆积体稳定性的冰川降雨型泥石流预警模型研究[J]. 冰川冻土, 2019, 41(4): 884-891. |
[2] | 党超, 褚娜娜, 张鹏. 冰碛湖溃决泥石流流量计算方法[J]. 冰川冻土, 2019, 41(1): 165-174. |
[3] | 罗文功, 魏学利, 陈宝成, 李伟, 李宾, 谢永利. 中巴经济走廊泥石流活动性分析——以中巴公路奥布段为例[J]. 冰川冻土, 2018, 40(4): 773-783. |
[4] | 党超, 褚娜娜, 丁瑜. 冰湖溃决泥石流形成的临界条件[J]. 冰川冻土, 2014, 36(5): 1176-1183. |
[5] | 刘金鹏, 高世铭, 王得楷, 蓝永超*, 王国亚. 甘肃河西地区泥石流沟分布特征与易发性评估研究[J]. 冰川冻土, 2013, 35(6): 1610-1618. |
[6] | 张之贤, 张强, 陶际春, 孙芸, 赵庆云. 2010年"8.8"舟曲特大山洪泥石流灾害形成的气候特征及地质地理环境分析[J]. 冰川冻土, 2012, 34(4): 898-905. |
[7] | 鲁安新, 邓晓峰, 赵尚学, 王丽红, 张盈松, 蒋熹. 2005年西藏波密古乡沟泥石流暴发成因分析[J]. 冰川冻土, 2006, 28(6): 956-960. |
[8] | 陈晓清, 崔鹏, 杨忠, 齐永青. 聂拉木县冲堆普2002年泥石流成因分析及防治对策[J]. 冰川冻土, 2006, 28(5): 776-781. |
[9] | 周秉根. 黄山第四纪泥砾沉积物分形结构特征与成因机制分析[J]. 冰川冻土, 1998, 20(2): 175-178. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000