冰川冻土 ›› 2021, Vol. 43 ›› Issue (4): 1144-1156.doi: 10.7522/j.issn.1000-0240.2021.0056
收稿日期:
2021-01-08
修回日期:
2021-03-28
出版日期:
2021-08-31
发布日期:
2021-09-09
通讯作者:
王根绪
E-mail:huangkw@imde.ac.cn;wanggx@imde.ac.cn
作者简介:
黄克威,博士研究生,主要从事寒区水文模拟研究. E-mail: huangkw@imde.ac.cn
基金资助:
Kewei HUANG1,2(), Genxu WANG1(
), Chunlin SONG3, Qihao YU4
Received:
2021-01-08
Revised:
2021-03-28
Online:
2021-08-31
Published:
2021-09-09
Contact:
Genxu WANG
E-mail:huangkw@imde.ac.cn;wanggx@imde.ac.cn
摘要:
冻土覆盖率高的小流域的径流形成受温度因素控制明显,普通水文模型不适用,而常规冻土水文模型因需要较多的气象观测要素而难以应用。考虑冻土流域产流机制,利用青藏高原腹地风火山小流域2017—2018年逐日降水、气温、径流观测数据,以降水、气温为输入,径流为输出,基于长短期记忆神经网络(LSTM)建立了适用于小流域尺度的冻土水文模型,并利用2019年观测数据进行验证。模型得益于LSTM特殊的细胞状态和门结构能够学习、反映活动层冻融过程和土壤含水量变化,具有一定的冻土水文学意义,能很好地模拟冻土区径流过程。模型训练期R2、NSE均为0.93,RMSE为0.63 m3·s-1,验证期R2、NSE分别为0.81、0.77,RMSE为0.69 m3·s-1。同时,为了验证模型可靠性,将模型应用于邻近的沱沱河流域,模型训练期(1990—2009年)R2、NSE均为0.73,验证期(2010—2019年)R2、NSE分别为0.66、0.64,模拟结果较好。考虑到未来气候变化,通过模型对风火山流域径流进行了预测:降水每增加10%,年径流增加约12%;气温每升高0.5 ℃,年径流增加约1%;春季融化期、秋季冻结期径流增幅明显,而由于蒸发加剧、活动层加深,径流在8月出现了减少。模型经训练后依靠降水、气温作为输入能较好地模拟、预测青藏高原冻土区小流域径流,为缺少土壤温度、水分等观测数据的冻土小流域径流研究提供了一种简单有效并具有一定物理意义的方法。
中图分类号:
黄克威, 王根绪, 宋春林, 俞祁浩. 基于LSTM的青藏高原冻土区典型小流域径流模拟及预测[J]. 冰川冻土, 2021, 43(4): 1144-1156.
Kewei HUANG, Genxu WANG, Chunlin SONG, Qihao YU. Runoff simulation and prediction of a typical small watershed in permafrost region of the Qinghai-Tibet Plateau based on LSTM[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 1144-1156.
表2
不同气候变化情景下风火山流域径流变化幅度"
月份 | 降水不变 | 降水增加10% | 降水增加20% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
+0.5 ℃ | +1.0 ℃ | +1.5 ℃ | +2.0 ℃ | +0 ℃ | +1.0 ℃ | +2.0 ℃ | +0 ℃ | +1.0 ℃ | +2.0 ℃ | |||
年均 | 2% | 3% | 4% | 5% | 12% | 14% | 16% | 24% | 27% | 28% | ||
4月 | 4% | 8% | 12% | 16% | 3% | 11% | 19% | 6% | 14% | 22% | ||
5月 | 2% | 4% | 5% | 7% | 4% | 8% | 11% | 9% | 13% | 16% | ||
6月 | 1% | 3% | 4% | 6% | 10% | 14% | 17% | 21% | 25% | 29% | ||
7月 | 3% | 6% | 10% | 14% | 12% | 19% | 29% | 24% | 33% | 43% | ||
8月 | -1% | -3% | -5% | -7% | 13% | 9% | 4% | 28% | 25% | 20% | ||
9月 | 4% | 6% | 8% | 10% | 15% | 21% | 22% | 31% | 32% | 30% | ||
10月 | 0% | 0% | 0% | 0% | 3% | 4% | 6% | 7% | 11% | 15% | ||
11月 | 10% | 20% | 29% | 39% | 0% | 20% | 39% | 0% | 19% | 38% | ||
12月 | 17% | 36% | 57% | 80% | 0% | 36% | 80% | 0% | 36% | 80% |
1 | Wang Tianye, Wu Tonghua, Wang Ping, et al. Spatial distribution and changes of permafrost on the Qinghai-Tibet Plateau revealed by statistical models during the period of 1980 to 2010[J]. Science of the Total Environment, 2019, 650: 661-670. |
2 | Zou Defu, Zhao Lin, Sheng Yu, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2527-2542. |
3 | Gruber S. Derivation and analysis of a high-resolution estimate of global permafrost zonation[J]. The Cryosphere, 2012, 6(1): 221-233. |
4 | Wang Genxu, Zhang Yinsheng. Theory and practice of ecohydrology in cold regions[M]. Beijing: Science Press, 2016. |
王根绪, 张寅生. 寒区生态水文学理论与实践[M]. 北京: 科学出版社, 2016. | |
5 | Yang Yong, Chen Rensheng. Research review on hydrology in the permafrost and seasonal frozen regions[J]. Advances in Earth Science, 2011, 26(7): 711-723. |
阳勇, 陈仁升. 冻土水文研究进展[J]. 地球科学进展, 2011, 26(7): 711-723. | |
6 | Kuchment L S, Gelfan A N, Demidov V N. A distributed model of runoff generation in the permafrost regions[J]. Journal of Hydrology, 2000, 240(1/2): 1-22. |
7 | Huang Kewei, Dai Junchen, Wang Genxu, et al. The impact of land surface temperatures on suprapermafrost groundwater on the central Qinghai-Tibet Plateau[J]. Hydrological Processes, 2020, 34(6): 1475-1488. |
8 | Ding Yongjian, Zhang Shiqiang, Wu Jinkui, et al. Recent progress on studies on cryospheric hydrological processes changes in China[J]. Advances in Water Science, 2020, 31(5): 690-702. |
丁永建, 张世强, 吴锦奎, 等. 中国冰冻圈水文过程变化研究新进展[J]. 水科学进展, 2020, 31(5): 690-702. | |
9 | Wang Genxu, Mao Tianxu, Chang Juan, et al. Processes of runoff generation operating during the spring and autumn seasons in a permafrost catchment on semi-arid plateaus[J]. Journal of Hydrology, 2017, 550: 307-317. |
10 | Zhang Yanlin, Chang Xiaoli, Liang Ji, et al. Influence of frozen ground on hydrological processes in alpine regions: a case study in an upper reach of the Heihe River[J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1362-1372. |
张艳林, 常晓丽, 梁继, 等. 高寒山区冻土对水文过程的影响研究: 以黑河上游八宝河为例[J]. 冰川冻土, 2016, 38(5): 1362-1372. | |
11 | Li Taibing, Wang Genxu, Hu Hongchang, et al. Hydrological process in a typical small permafrost watershed at the headwaters of Yangtze River[J]. Journal of Glaciology and Geocryology, 2009, 31(1): 82-88. |
李太兵, 王根绪, 胡宏昌, 等. 长江源多年冻土区典型小流域水文过程特征研究[J]. 冰川冻土, 2009, 31(1): 82-88. | |
12 | Kang Ersi, Cheng Guodong, Lan Yongchao, et al. A model for simulating the response of runoff from the mountainous watersheds of inland river basins in the arid area of Northwest China to climatic changes[J]. Science in China: Series D Earth Sciences, 1999, 42(): 52-63. |
13 | Lindstrom G, Bishop K, Lofvenius M O. Soil frost and runoff at Svartberget, northern Sweden: measurements and model analysis[J]. Hydrological Processes, 2002, 16(17): 3379-3392. |
14 | Guan Zhicheng, Duan Yuansheng. Modeling the hydrological process of drainages in cold regions[J]. Journal of Glaciology and Geocryology, 2003, 25(): 266-272. |
关志成, 段元胜. 寒区流域水文模拟研究[J]. 冰川冻土, 2003, 25(): 266-272. | |
15 | Zhou Jian, Li Xin, Wang Genxu, et al. An improved precipitation-runoff model based on MMS and its application in the up stream basin of the Heihe River[J]. Journal of Natural Resources, 2008, 23(4): 724-736. |
周剑, 李新, 王根绪, 等. 一种基于MMS的改进降水径流模型在中国西北地区黑河上游流域的应用[J]. 自然资源学报, 2008, 23(4): 724-736. | |
16 | Qi Junyu, Zhang Xuesong, Wang Qianfeng. Improving hydrological simulation in the upper Mississippi River basin through enhanced freeze-thaw cycle representation[J]. Journal of Hydrology, 2019, 571: 605-618. |
17 | Qi Junyu, Li Sheng, Li Qiang, et al. Assessing an enhanced version of SWAT on water quantity and quality simulation in regions with seasonal snow cover[J]. Water Resources Management, 2016, 30(14): 5021-5037. |
18 | Qi Junyu, Li Sheng, Li Qiang, et al. A new soil-temperature module for SWAT application in regions with seasonal snow cover[J]. Journal of Hydrology, 2016, 538: 863-877. |
19 | Li Mingliang, Yang Dawen, Hou Jie, et al. A distributed hydrological model of the Heilongjiang River basin[J]. Journal of Hydroelectric Engineering, 2021, 40(1): 65-75. |
李明亮, 杨大文, 侯杰, 等. 黑龙江流域分布式水文模型研究[J]. 水力发电学报, 2021, 40(1): 65-75. | |
20 | Liang Xu, Lettenmaier D P, Wood E F, et al. A simple hydrologically based model of land surface water and energy fluxes for general circulation models[J]. Journal of Geophysical Research: Atmospheres, 1994, 99(D7): 14415-14428. |
21 | Rigon R, Bertoldi G, Over T M. GEOtop: a distributed hydrological model with coupled water and energy budgets[J]. Journal of Hydrometeorology, 2006, 7(3): 371-388. |
22 | Pomeroy J W, Gray D M, Brown T, et al. The cold regions hydrological process representation and model: a platform for basing model structure on physical evidence[J]. Hydrological Processes, 2007, 21(19): 2650-2667. |
23 | Gao Bing, Qin Yue, Wang Yuhan, et al. Modeling ecohydrological processes and spatial patterns in the upper Heihe basin in China[J/OL]. Forests, 2016, 7(1) [2021-06-17]. . |
24 | Chen R, Wang G, Yang Y, et al. Effects of cryospheric change on alpine hydrology: combining a model with observations in the upper reaches of the Hei River, China[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(7): 3414-3442. |
25 | Chen Rensheng, Lu Shihua, Kang Ersi, et al. A distributed water-heat coupled model for mountainous watershed of an inland river basin of Northwest China (I): model structure and equations[J]. Environmental Geology, 2008, 53(6): 1299-1309. |
26 | Qi Jia, Wang Lei, Zhou Jing, et al. Coupled snow and frozen ground physics improves cold region hydrological simulations: an evaluation at the upper Yangtze River basin (Tibetan Plateau)[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(23): 12985-13004. |
27 | Wood E F, Roundy J K, Troy T J, et al. Hyperresolution global land surface modeling: meeting a grand challenge for monitoring Earth’s terrestrial water[J/OL]. Water Resources Research, 2011, 47(5) [2021-06-17]. . |
28 | Kratzert F, Klotz D, Brenner C, et al. Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks[J]. Hydrology and Earth System Sciences, 2018, 22(11): 6005-6022. |
29 | Chen Xi, Huang Jiaxu, Han Zhen, et al. The importance of short lag-time in the runoff forecasting model based on long short-term memory[J/OL]. Journal of Hydrology, 2020, 589 [2021-06-17]. . |
30 | Gao Hongkai, Wang Jingjing, Yang Yuzhong, et al. Permafrost hydrology of the Qinghai-Tibet Plateau: a review of processes and modeling[J/OL]. Frontiers in Earth Science, 2021, 8 [2021-06-17]. . |
31 | Karandish F, Simunek J. A comparison of numerical and machine-learning modeling of soil water content with limited input data[J]. Journal of Hydrology, 2016, 543: 892-909. |
32 | Yaseen Z M, El-shafie A, Jaafar O, et al. Artificial intelligence based models for stream-flow forecasting: 2000-2015[J]. Journal of Hydrology, 2015, 530: 829-844. |
33 | Chang Juan, Wang Genxu, Guo Linmao. Simulation of soil thermal dynamics using an artificial neural network model for a permafrost alpine meadow on the Qinghai-Tibetan Plateau[J]. Permafrost and Periglacial Processes, 2019, 30(3): 195-207. |
34 | Chang Juan, Wang Genxu, Mao Tianxu, et al. ANN model-based simulation of the runoff variation in response to climate change on the Qinghai-Tibet Plateau, China[J/OL]. Advances in Meteorology, 2017 [2021-06-17]. . |
35 | Chang Juan, Wang Genxu, Mao Tianxu. Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model[J]. Journal of Hydrology, 2015, 529: 1211-1220. |
36 | Dang Chiheng, Zhang Hongbo, Chen Keyu, et al. Application of the long short-term memory neural network for rainfall-runoff simulation in seasonal snowmelt basin[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2020, 41(5): 10-18. |
党池恒, 张洪波, 陈克宇, 等. 长短期记忆神经网络在季节性融雪流域降水-径流模拟中的应用[J]. 华北水利水电大学学报(自然科学版), 2020, 41(5): 10-18. | |
37 | Gao Shuai, Huang Yuefei, Zhang Shuo, et al. Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation[J/OL]. Journal of Hydrology, 2020, 589 [2021-06-17]. . |
38 | Wang Xin, Wu Ji, Liu Chao, et al. Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 772-784. |
王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784. | |
39 | Tennant C, Larsen L, Bellugi D, et al. The utility of information flow in formulating discharge forecast models: a case study from an arid snow-dominated catchment[J/OL]. Water Resources Research, 2020, 56(8) [2021-06-17]. . |
40 | Zhao Lin, Hu Guojie, Zou Defu, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1233-1246. |
赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊, 2019, 34(11): 1233-1246. | |
41 | Chen Fahu, Fu Bojie, Xia Jun, et al. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects[J]. Science China: Earth Sciences, 2019, 62(11): 1665-1701. |
陈发虎, 傅伯杰, 夏军, 等. 近70年来中国自然地理与生存环境基础研究的重要进展与展望[J]. 中国科学: 地球科学, 2019, 49(11): 1659-1696. | |
42 | Hu Guojie, Zhao Lin, Li Ren, et al. Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products[J]. Geoderma, 2019, 337: 893-905. |
43 | Wu Qingbai, Niu Fujun. Permafrost changes and engineering stability in Qinghai-Xizang Plateau[J]. Chinese Science Bulletin, 2013, 58(10): 1079-1094. |
44 | Cheng Guodong, Wu Tonghua. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J/OL]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2) [2021-06-17]. . |
45 | Cheng Guodong, Jin Huijun. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes[J]. Hydrogeology and Engineering Geology, 2013, 40(1): 1-11. |
程国栋, 金会军. 青藏高原多年冻土区地下水及其变化[J]. 水文地质工程地质, 2013, 40(1): 1-11. | |
46 | Tang Qiuhong, Lan Cuo, Su Fengge, et al. Streamflow change on the Qinghai-Tibet Plateau and its impacts[J]. Chinese Science Bulletin, 2019, 64(27): 2807-2821. |
汤秋鸿, 兰措, 苏凤阁, 等. 青藏高原河川径流变化及其影响研究进展[J]. 科学通报, 2019, 64(27): 2807-2821. | |
47 | Gao Bing, Yang Dawen, Qin Yue, et al. Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai-Tibetan Plateau[J]. The Cryosphere, 2018, 12(2): 657-673. |
48 | Mao Tianxu, Wang Genxu. Analysis on characteristics of low-flow based on the monthly runoff recession coefficient in the Three-River Headwaters Region[J]. Resources and Environment in the Yangtze Basin, 2016, 25(7): 1150-1157. |
毛天旭, 王根绪. 基于逐月退水系数的三江源枯季径流特征分析[J]. 长江流域资源与环境, 2016, 25(7): 1150-1157. | |
49 | Wang Yousheng, Cheng Congcong, Xie Yun, et al. Increasing trends in rainfall-runoff erosivity in the Source Region of the Three Rivers, 1961-2012[J]. Science of the Total Environment, 2017, 592: 639-648. |
50 | Song Chunlin, Wang Genxu, Mao Tianxu, et al. Linkage between permafrost distribution and river runoff changes across the Arctic and the Tibetan Plateau[J]. Science China: Earth Sciences, 2020, 63(2): 292-302. |
51 | Ye Baisheng, Yang Daqing, Zhang Zhongliang, et al. Variation of hydrological regime with permafrost coverage over Lena basin in Siberia[J/OL]. Journal of Geophysical Research: Atmospheres, 2009, 114(D7) [2021-06-17]. . |
52 | Li Na, Wang Genxu, Yang Yan, et al. Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai-Tibet Plateau[J]. Soil Biology & Biochemistry, 2011, 43(5): 942-953. |
53 | Song Chunlin, Wang Genxu, Mao Tianxu, et al. Importance of active layer freeze-thaw cycles on the riverine dissolved carbon export on the Qinghai-Tibet Plateau permafrost region[J/OL]. PeerJ, 2019 [2021-06-17]. . |
54 | Song Chunlin, Wang Genxu, Hu Zhaoyong, et al. Net ecosystem carbon budget of a grassland ecosystem in central Qinghai-Tibet Plateau: integrating terrestrial and aquatic carbon fluxes at catchment scale[J/OL]. Agricultural and Forest Meteorology, 2020, 290 [2021-06-17]. . |
55 | Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing: Science Press, 2000. |
周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000. | |
56 | Wu Qingbai, Liu Yongzhi. Ground temperature monitoring and its recent change in Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2004, 38(2/3): 85-92. |
57 | Zhao Haipeng, Mingxia Lü, Wang Yibo, et al. Soil water content and temperature of the active layer dynamics on the slope of the Fenghuoshan basin, Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1158-1168. |
赵海鹏, 吕明侠, 王一博, 等. 青藏高原风火山流域坡面尺度活动层土壤水热时空变化特征[J]. 冰川冻土, 2020, 42(4): 1158-1168. | |
58 | Zhang Wei, Wang Genxu, Zhou Jian, et al. Simulating the water-heat processes in permafrost regions in the Tibetan Plateau based on CoupModel[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1099-1109. |
张伟, 王根绪, 周剑, 等. 基于CoupModel的青藏高原多年冻土区土壤水热过程模拟[J]. 冰川冻土, 2012, 34(5): 1099-1109. | |
59 | Wang Genxu, Hu Hongchang, Li Taibin. The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed[J]. Journal of Hydrology, 2009, 375(3/4): 438-449. |
60 | Tang Xiongpeng, Haishen Lü. Temporal variation of main hydrologic meteorological elements in Tuotuohe River basin[J]. Water Resource and Power, 2016, 34(12): 37-40. |
唐雄朋, 吕海深. 沱沱河流域水文气象要素变化特征分析[J]. 水电能源科学, 2016, 34(12): 37-40. | |
61 | Luo Yu, Qin Ningsheng, Zhou Bin, et al. Runoff characteristics and hysteresis to precipitation in Tuotuo River basin in source region of Yangtze River during 1961-2011[J]. Bulletin of Soil and Water Conservation, 2019, 39(2): 22-28. |
罗玉, 秦宁生, 周斌, 等. 长江源区沱沱河流域1961-2011年径流特征及其对降水的滞后效应[J]. 水土保持通报, 2019, 39(2): 22-28. | |
62 | An Lixing, Hao Yonghong, Yeh T-C J, et al. Simulation of karst spring discharge using a combination of time-frequency analysis methods and long short-term memory neural networks[J/OL]. Journal of Hydrology, 2020, 589 [2021-06-17]. . |
63 | Han Li, Song Kechao, Zhang Wenjiang, et al. Temporal and spatial variations of hydrological factors in the source area of the Yangtze River and its responses to climate change[J]. Moutain Research, 2017, 35(2): 129-141. |
韩丽, 宋克超, 张文江, 等. 长江源头流域水文要素时空变化及对气候因子的响应[J]. 山地学报, 2017, 35(2): 129-141. | |
64 | Wang Genxu, Li Shengnan, Hu Hongchang, et al. Water regime shifts in the active soil layer of the Qinghai-Tibet Plateau permafrost region, under different levels of vegetation[J]. Geoderma, 2009, 149(3/4): 280-289. |
65 | Cheng Guodong, Zhao Lin, Li Ren, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2783-2795. |
程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27): 2783-2795. | |
66 | Yang Yuzhong, Wu Qingbai, Jin Huijun, et al. Delineating the hydrological processes and hydraulic connectivities under permafrost degradation on Northeastern Qinghai-Tibet Plateau, China[J]. Journal of Hydrology, 2019, 569: 359-372. |
67 | Wu Qingbai, Zhang Tingjun. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J/OL]. Journal of Geophysical Research: Atmospheres, 2010, 115(D9) [2021-06-17]. . |
68 | Lawrence D M, Slater A G. A projection of severe near-surface permafrost degradation during the 21st century[J/OL]. Geophysical Research Letters, 2005, 32(24) [2021-06-17]. . |
69 | Guo Linmao, Chang Juan, Xu Hongliang, et al. Simulation and prediction of permafrost active layer temperature based on BP neural network and FEFLOW model: take the Fenghuoshan area on the Tibetan Plateau as an example[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 399-411. |
郭林茂, 常娟, 徐洪亮, 等. 基于BP神经网络和FEFLOW模型模拟预测多年冻土活动层温度: 以青藏高原风火山地区为例[J]. 冰川冻土, 2020, 42(2): 399-411. |
[1] | 李艳, 金会军, 温智, 赵子龙, 金晓颖. 多年冻土区斜坡稳定性研究综述[J]. 冰川冻土, 2022, 44(1): 203-216. |
[2] | 刘文惠, 谢昌卫, 刘海瑞, 庞强强, 王武, 刘广岳, 杨雨昆, 王铭, 张琪. Stefan方程在土壤冻融过程模拟中的应用[J]. 冰川冻土, 2022, 44(1): 327-339. |
[3] | 李智斌, 赵林, 刘广岳, 邹德富, 汪凌霄, 杨斌, 杜二计, 胡国杰, 周华云, 王翀, 幸赞品, 赵建婷, 殷秀峰, 迟鸿飞, 谭昌海, 陈文. 冻结季沱沱河源多年冻土区活动层土壤水分含量分析[J]. 冰川冻土, 2022, 44(1): 56-68. |
[4] | 周华云, 刘广岳, 杨斌, 邹德富, 赵林, 杜二计, 谭昌海, 陈文, 杨朝磊, 文浪, 旺扎多吉, 张浔浔, 肖瑶, 胡国杰, 李智斌, 谢昌卫, 汪凌霄, 刘世博. 长江上游沱沱河源区多年冻土发育特征[J]. 冰川冻土, 2022, 44(1): 69-82. |
[5] | 刘广岳, 邹德富, 杨斌, 杜二计, 周华云, 肖瑶, 赵林, 谭昌海, 胡国杰, 庞强强, 王武, 孙哲, 朱小凡, 殷秀峰, 汪凌霄, 李智斌, 谢昌卫. 青藏高原腹地各拉丹冬南北坡多年冻土考察初步结果[J]. 冰川冻土, 2022, 44(1): 83-95. |
[6] | 罗京, 牛富俊, 林战举, 刘明浩, 尹国安, 高泽永. 青藏高原多年冻土区热融滑塌发育特征及规律[J]. 冰川冻土, 2022, 44(1): 96-105. |
[7] | 蒋雨芹,文军,吕少宁,王作亮,刘闻慧,武月月,邓浩. 地基微波遥感评估黄河源区草原下垫面土壤冻融过程研究[J]. 冰川冻土, 2021, 43(6): 1718-1731. |
[8] | 李飞,郭佳锴,张世强. VIC-CAS导热率和未冻水算法改进及其对多年冻土水热过程模拟的实验研究[J]. 冰川冻土, 2021, 43(6): 1888-1903. |
[9] | 王一博,吕明侠,赵海鹏,高泽永. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1301-1311. |
[10] | 范星文,林战举,罗京,刘明浩,尹国安,高泽永. 高海拔多年冻土区路基工程行为对低温多年冻土长期影响的监测研究[J]. 冰川冻土, 2021, 43(5): 1323-1333. |
[11] | 王蓝翔,董慧科,龚平,王传飞,吴晓东. 多年冻土退化下碳、氮和污染物循环研究进展[J]. 冰川冻土, 2021, 43(5): 1365-1382. |
[12] | 冯晓琳,张艳林,常晓丽. 大兴安岭湿地多年冻土区活动层水热特征分析[J]. 冰川冻土, 2021, 43(5): 1468-1479. |
[13] | 温理想,郭蒙,黄书博,于方冰,钟超,周粉粉. 大兴安岭北部多年冻土区植被对活动层厚度变化的响应[J]. 冰川冻土, 2021, 43(5): 1531-1541. |
[14] | 张明礼, 王斌, 王得楷, 叶伟林, 郭宗云, 高樯, 岳国栋. 降雨对青藏高原多年冻土区地表辐射的影响——以北麓河地区为例[J]. 冰川冻土, 2021, 43(4): 1092-1101. |
[15] | 宋正民, 穆彦虎, 马巍, 俞祁浩, 栗晓林. 高海拔冻土区通风管路基管内风速及影响因素研究[J]. 冰川冻土, 2021, 43(4): 1111-1120. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000