冰川冻土 ›› 2022, Vol. 44 ›› Issue (1): 217-228.doi: 10.7522/j.issn.1000-0240.2022.0032
收稿日期:
2020-02-02
修回日期:
2020-08-31
出版日期:
2022-02-28
发布日期:
2022-03-28
通讯作者:
李国玉,马巍
E-mail:wangfei9107@126.com;guoyuli@lzb.ac.cn;mawei@lzb.ac.cn
作者简介:
王飞,讲师,主要从事冻土与寒区管道工程研究. E-mail: wangfei9107@126.com
基金资助:
Fei WANG1,2(), Guoyu LI2,3(
), Wei MA2(
)
Received:
2020-02-02
Revised:
2020-08-31
Online:
2022-02-28
Published:
2022-03-28
Contact:
Guoyu LI, Wei MA
E-mail:wangfei9107@126.com;guoyuli@lzb.ac.cn;mawei@lzb.ac.cn
摘要:
冻土区管道工程建设面临冻土工程特性及相关地质问题的严重挑战,开展管道-冻土相互作用研究对于解决管道稳定性问题具有重要的实际指导意义。综述国内外输油管道-冻土热力相互作用研究进展发现,目前研究集中在特定(定值或周期变化)油温下管周土温度场的定量描述以及差异冻胀/融沉下交界面处管道力学响应规律的解耦分析,缺乏完整时空序列的现场综合观测与管土界面特性及其动态演化研究。对管道防融沉措施进行归纳总结发现,各措施应用效果缺乏管道应力与变形数据的有效支持。应加强管道本身与管道沿线次生冻融灾害监测及相关数据获取,以此为校验开展管土界面特性及演化规律的系统研究,以便构建更为合理的管土接触面单元模型,将其和具有普适性的冻土模型相结合,植入有限元软件提高管土相互作用模型计算可靠性,并建议立足管道变形角度对防融沉措施的工程应用效果予以综合评价。
中图分类号:
王飞, 李国玉, 马巍. 多年冻土区输油管道-管周冻土热力相互作用研究进展[J]. 冰川冻土, 2022, 44(1): 217-228.
Fei WANG, Guoyu LI, Wei MA. Progress in the research on the thermo-mechanical interaction between oil pipeline and permafrost in cold regions[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 217-228.
表1
冻土区典型输油管道工程"
管道名称 | 国家 | 路线 | 建设年份 | 长度/km | 管径/mm | 埋设方式/ 埋深/m | 油温/℃ | 日输量/m3 | 主要冻害及防治措施 |
---|---|---|---|---|---|---|---|---|---|
Canol | 加拿大 | 诺曼井— 怀特霍斯 | 1943—1944年 | 960 | 100 | 地表敷设 | — | 175 | 季节冻融,多次出现管道破裂和原油泄漏; 无防治措施 |
Norman Wells | 加拿大 | 诺曼井— 咱马湖 | 1980—1985年 | 869 | 328 | 沟埋敷设/ 1.1~1.2 | -1~6 | 5 000 | 冻胀、融沉、管沟积水、坡面侵蚀、水土流失等; 冬季施工、环境油温、斜坡木屑保温、增加壁厚等 |
Trans Alaska | 美国 | 普拉德霍湾—瓦尔迪斯 | 1974—1977年 | 1 287 | 1 220 | 地表架空 沟埋敷设/ 0.4~4.0 | 38~63 | 1.1×105 ~ 3.3×105 | 埋地管段显著融沉,出现管道破裂和原油泄漏; 热管+桩基组合的地表架空方式穿越融化不稳定多年冻土区,Z形敷设、管道保温、重铺等 |
格拉 | 中国 | 格尔木—拉萨 | 1972—1977年 | 1 076 | 159 | 沟埋敷设/ 1.2~1.4 | -5~9 | 850 | 冻胀、融沉、冰堵、冻胀丘、冰椎等,造成至少30次泄漏及4次破裂; 337 km左右的管段进行改线重铺 |
ESPO | 俄罗斯 | 泰舍特— 科沃罗季诺—科济米诺 | 2006—2009年(一期) 2010—2012年(二期) | 4 756 | 1 067 1 220 | 沟埋敷设/ 2.0 m左右 | 15~32* | 1.0×105 (一期) 1.7×105 (二期) | 融沉、管沟积水、热喀斯特,导致管道直接漂浮于地表,进一步遭受季节冻融的强烈影响; 铺设保温层、安装埋地管道悬挂系统及土体地温冷却装置(热管等)、开挖重铺、加载混凝土块等 |
CRCOP | 中国 | 斯科沃罗季诺—大庆 | 2009—2010年(I线) 2016—2017年(II线) | 1 030 | 813 | 沟埋敷设/(1.6~2.0 m,局部地段高达4.0 m) | 0.4~24.6 | 5.0×105 (一期) 5.0×105 (二期) | 高温高含冰量管段显著融沉,管沟地表沉降显著且伴有纵向裂缝、管沟上方大量积水,水土流失造成警示带,甚至管道出露地表;其他冻害如冻胀丘、冰椎等在管道沿线广泛分布; 冻胀非敏感性土换填、管道保温、热管、通风管等技术 |
表2
埋地管道-冻土相互作用模型试验"
参考文献 | 类型 | 尺度 | 管道信息/m | 温度/℃ | 研究内容 | |||
---|---|---|---|---|---|---|---|---|
长度 | 管径 | 埋深 | 管道 | 管周土 | ||||
[ | 现场 | 足尺 | 12 | 1.2 | 0.75 | -10 | 粉土(+) | 管道冻胀、冻胀防治措施效果评估 涉及6种工况(不同埋深、砂砾换填、有/无保温) |
[ | 大比例 | 18 | 0.273 | 0.33 | -10 | 砂土/粉土(+) | 管道差异性冻胀(粉土/砂土交界面处) 空气温度为-0.75 ℃,4次循环 | |
[ | 足尺 | 105 | 0.9 | 1.8 | -15~-10 | -0.08~-0.25 | 管道差异性冻胀(冻土/融土交界面处) X65钢,壁厚8.5 mm,空气温度-35~24 ℃ | |
[ | 足尺 | 27.4 | 0.61 | 0.9 | 71 | 粉土(-) 不同含冰量 | 管基土融沉及管道沉降问题 地温、沉降及孔压变化规律 | |
[ | 室内 | 小比例 | 1.64 | 0.0381 0.0508 | 0.04 0.06 | -3 | 多晶冰 | 管道冻胀问题 304钢,管道应力及变形 |
[ | 小比例 | 0.9 | 0.14 | 0.26 | -5 | — | 管道差异性冻胀问题 回填土类型、位移速率及地温敏感性分析 | |
[ | 中等 | 7.8 | 0.108 | 0.25 | -15,0,10,20,25 | 粉质黏土 不同黏粒含量 | 管道冻胀、融沉问题 环境温度-20 ℃或20~30 ℃,保温措施效果验证 | |
[ | 小比例 | 0.395 | 0.071 | 0.2 | -13.7~10.5 | 砂土/掺橡胶颗粒砂土 | 管道冻胀问题 环境温度-15 ℃,管周土对管道冻胀变形的影响 | |
[ | 离心机 | 小比例 | 0.7 | 0.0413 | 0.025 | -10 | 粉土(+) | 基于离心机技术模拟加拿大Calgary管道冻胀试验 |
1 | Bone R M, Mahnic R J. Norman Wells: the oil center of the northwest territories[J]. ARCTIC, 1984, 37(1): 53-60. |
2 | Barry P S. The prolific pipeline: finding oil for Canol[J]. The Dalhousie Review, 1977, 205-223. |
3 | Nixon J, Stuchly J, Pick A. Design of Norman Wells pipeline for frost heave and thaw settlement[C]//Offshore Mechanics Committee of the Petroleum Division of ASME. Proceedings of the Third International Offshore Mechanics and Arctic Engineering Symposium. New York: American Society of Mechanical Engineers, 1984: 69-76. |
4 | Burgess M M, Harry D G. Norman Wells pipeline permafrost and terrain monitoring: geothermal and geomorphic observations, 1984–1987[J]. Canadian Geotechnical Journal, 1990, 27(2): 233-244. |
5 | Nixon J F, Burgess M. Norman Wells pipeline settlement and uplift movements[J]. Canadian Geotechnical Journal, 1999, 36(1): 119-135. |
6 | Burgess M M, Oswell J, Smith S L. Government-industry collaborative monitoring of a pipeline in permafrost: the Norman Wells Pipeline experience, Canada[C]//Proceedings of the 63rd Canadian Geotechnical & 6th Canadian Permafrost Conference. Calgary, Alberta, Canada: Canadian Geotechnical Society. 2010: 579-586. |
7 | Smith S L, Burgess M M, Riseborough D W. Ground temperature and thaw settlement in frozen peatlands along the Norman Wells pipeline corridor, NWT Canada: 22 years of monitoring[C]//Kane D L, Hinkel K M. Proceedings of the 9th International Conference on Permafrost. Fairbanks: Institute of Northern Engineering, University of Alaska Fairbanks, 2008: 1665-1670. |
8 | Oswell J M. Pipelines in permafrost: geotechnical issues and lessons[J]. Canadian Geotechnical Journal, 2011, 48(9): 1412-1431. |
9 | Lachenbruch A H. Some estimates of the thermal effects of a heated pipeline in permafrost[J]. Washington D C, Geological Survey Circular, 1970, 632: 1-23. |
10 | Liguori A, Maple J A, Heuer C E. The design and construction of the Alyeska pipeline[C]//Crawford C B. Proceedings of the 3rd International Conference on Permafrost. Ottawa: The National Research Council of Canada, 1978: 151-157. |
11 | Johnson E R, Hegdal L A. Permafrost-related performance of the Trans-Alaska oil pipeline[C]//Kane D L, Hinkel K M. Proceedings of the 9th International Conference on Permafrost. Fairbanks: Institute of Northern Engineering, University of Alaska Fairbanks, 2008: 857-864. |
12 | Yao Zhixiang. Removal and prevention of ice blockage in the Golmud to Lhasa Pipeline[J]. Pipeline Technique and Equipment, 2003(1): 24-27. |
姚志祥. 格拉管线的冰堵排除实践及预防措施[J]. 管道技术与设备, 2003(1): 24-27. | |
13 | Jin Huijun, Yu Wenbing, Chen Youchang, et al. (Differential) Frost heave and thaw settlement in the engineering design and construction of oil pipelines in permafrost regions: a review[J]. Journal of Glaciology and Geocryology, 2005, 27(3): 454-464. |
金会军, 喻文兵, 陈友昌, 等. 多年冻土区输油管道工程中的(差异性)融沉和冻胀问题[J]. 冰川冻土, 2005, 27(3): 454-464. | |
14 | He Ruixia, Jin Huijun, Lanzhi Lü, et al. Permafrost and environmental problems along the Golmud-Lhasa oil product pipeline and their mitigation[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 18-27. |
何瑞霞, 金会军, 吕兰芝, 等. 格尔木-拉萨成品油管道沿线冻土工程和环境问题及其防治对策[J]. 冰川冻土, 2010, 32(1): 18-27. | |
15 | He Ruixia, Jin Huijun. Permafrost and cold-region environmental problems of the oil product pipeline from Golmud to Lhasa on the Qinghai-Tibet Plateau and their mitigation[J]. Cold Regions Science and Technology, 2010, 64(3): 279-288. |
16 | Streletskiy D, Anisimov O, Vasiliev A. Snow and ice-related hazards, risks, and disasters[M]. Amsterdam: Elsevier, 2015: 303-344. |
17 | Sagers M J. The regional dimension of Russian oil production: is a sustained recovery in prospect? [J]. Eurasian Geography and Economics, 2006, 47(5): 505-545. |
18 | Itoh S. Russia’s energy diplomacy toward the Asia-Pacific: is Moscow’s ambition dashed? [J]. Energy and Environment in Slavic Eurasia: Toward the Establishment of the Network of Environmental Studies in the Pan-Okhotsk Region, edited by Tabata Shinichiro, 2008, 33: 64. |
19 | Yakovleva N. Oil pipeline construction in Eastern Siberia: Implications for indigenous people[J]. Geoforum, 2011, 42(6): 708-719. |
20 | Tataurov S B, Surikov V I. An evaluation of the factors affecting the thermal state of frozen soils at the foundations of a buried oil pipeline[J]. Pipeline Science and Technology, 2018, 2(2): 83-95. |
21 | Koff G L, Chesnokova I V. Particularities of permafrost conditions ESPO petroleum pipeline[C]//Proceedings of the 3rd EAGE St.Petersburg International Conference and Exhibition on Geosciences-Geosciences: From New Ideas to New Discoveries. Saint Petersburg, Russia. 2008. DOI: 10.3997/2214-4609.20146900 . |
22 | Zhang Meilei. On BCTO of eastern Russia and Siberia[J]. Journal of Heihe University, 2010, 1(1): 61-65. |
张美雷. 俄罗斯东西伯利亚—太平洋输油管道(BCTO)管窥[J]. 黑河学院学报, 2010, 1(1): 61-65. | |
23 | Wan Xiuwen. Prospect analysis and present status of the eastern Siberia–Pacific Ocean oil pipeline[D]. Harbin: Helongjiang University, 2013. |
万修文. 俄罗斯“东西伯利亚—太平洋”石油管道现状与前景论析[D]. 哈尔滨: 黑龙江大学, 2013. | |
24 | Hjort J, Karjalainen O, Aalto J, et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century[J]. Nature Communications, 2018, 9: 5147. |
2525 | Kudryavtsev S, Kovshun V, Mut A. The investigation of freezing and thawing processes of metal foundations ground of pipelines[M]//Murgul V, Popovic Z. International Scientific Conference Energy Management of Municipal Transportation Facilities and Transport EMMFT 2017. Cham: Springer International Publishing, 2017: 953-961. |
26 | Kudriavtcev S, Kovshun V. The investigation of load-bearing capacity of soil base for oil pipeline depending on local geocryological conditions[J]. MATEC Web of Conferences, 2019, 265: 02019. |
27 | Li Guoyu, Ma Wei, Wang Xueli, et al. Frost hazards and mitigative measures following operation of Mohe-Daqing line of China-Russia crude oil pipeline[J]. Rock and Soil Mechanics, 2015, 36(10): 2963-2973. |
李国玉, 马巍, 王学力, 等. 中俄原油管道漠大线运营后面临一些冻害问题及防治措施建议[J]. 岩土力学, 2015, 36(10): 2963-2973. | |
28 | Cai Yongjun, Wang Kaimeng, Zhang Shibin, et al. Causes and counter-measures for exposed pipeline in frigid zone[J]. Oil & Gas Storage and Transportation, 2014, 33(5): 484-487. |
蔡永军, 王凯濛, 张世斌, 等. 高寒冻土区管道露管原因分析及治理[J]. 油气储运, 2014, 33(5): 484-487. | |
29 | Wang Fei, Li Guoyu, Ma Wei, et al. Pipeline-permafrost interaction monitoring system along the China-Russia crude oil pipeline[J]. Engineering Geology, 2019, 254: 113-125. |
30 | Li Guoyu, Wang Fei, Ma Wei, et al. Field observations of cooling performance of thermosyphons on permafrost under the China-Russia Crude Oil Pipeline[J]. Applied Thermal Engineering, 2018, 141: 688-696. |
31 | Wang Fei, Li Guoyu, Ma Wei, et al. Permafrost thawing along the China-Russia Crude Oil Pipeline and countermeasures: A case study in Jiagedaqi, Northeast China[J]. Cold Regions Science and Technology, 2018, 155: 308-313. |
32 | Wang Fei, Li Guoyu, Ma Wei, et al. Permafrost warming along the Mo’he-Jiagedaqi section of the China-Russia crude oil pipeline[J]. Journal of Mountain Science, 2019, 16(2): 285-295. |
33 | Wang Yongping, Jin Huijun, Li Guoyu, et al. Secondary geohazards along the operating Mohe-Jagdaqi section of China-Russia Crude Oil Pipeline in permafrost regions: a case study on a seasonal frost mound at the Site MDX364[J]. Journal of Glaciology and Geocryology, 2015, 37(3): 731-739. |
王永平, 金会军, 李国玉, 等. 漠河-加格达奇段多年冻土区中俄原油管道运营以来的次生地质灾害研究——以MDX364处的季节性冻胀丘为例[J]. 冰川冻土, 2015, 37(3): 731-739. | |
34 | Huang Fuqi, Zhang Jiayou, Luo Tanghu. Thermal calculation of the underground oil pipeline[J]. Acta Petrolei Sinica, 1980, 1(1): 77-91. |
黄福其, 张家猷, 罗塘湖. 地下输油管热工计算[J]. 石油学报, 1980, 1(1): 77-91. | |
35 | Carslaw H S, Jaeger J C. Conduction of Heat in Solids[M]. Oxford: Clarendon Press, 1959. |
36 | Porkhayev G V. Temperature fields in foundations[C]//Woods K B. Proceedings of 1st International Conference on Permafrost. Washington: National Academy of Sciences-National Research Council, 1963: 285-291. |
37 | Thornton D E. Steady-state and quasi-static thermal results for bare and insulated pipes in permafrost[J]. Canadian Geotechnical Journal, 1976, 13(2): 161-171. |
38 | Hwang C T. On quasi-static solutions for buried pipes in permafrost[J]. Canadian Geotechnical Journal, 1977, 14(2): 180-192. |
39 | Seshadri R, Krishnayya A V G. Quasi-steady approach for thermal analysis of insulated structures[J]. International Journal of Heat and Mass Transfer, 1980, 23(1): 111-121. |
40 | Lunardini V J. Approximate phase change solutions for insulated buried cylinders[J]. Journal of Heat Transfer, 1983, 105(1): 25-32. |
41 | Zhang G P, Weinbaum S, Jiji L M. An approximate three-dimensional solution for melting or freezing around a buried pipe beneath a free surface[J]. Journal of Heat Transfer, 1986, 108(4): 900-906. |
42 | Bronfenbrener L, Korin E. Thawing and refreezing around a buried pipe[J]. Chemical Engineering and Processing: Process Intensification, 1999, 38(3): 239-247. |
43 | Li Changjun, Zeng Ziqiang, Jiang Maoze. Thermal calculation of buried oil pipeline[J]. Foreign Oilfield Engineering, 1999(2): 59-62. |
李长俊, 曾自强, 江茂泽. 埋地输油管道的温度计算[J]. 国外油田工程, 1999(2): 59-62. | |
44 | Li Nansheng, Li Hongsheng, Ding Dewen. The quasi-static temperature field and heat engineering parameters of buried petroleum pipelines in seasonally frozen ground regions[J]. Journal of Glaciolgy and Geocryology, 1997, 19(1): 65-72. |
李南生, 李洪升, 丁德文. 浅埋集输油管线拟稳态温度场及热工计算[J]. 冰川冻土, 1997, 19(1): 65-72. | |
45 | Fan Hongming, Shi Shouxia, He Zhongyi. Temperature field analysis of the under ground straight buried pipe[J]. Journal of Harbin University of Civil Engineering and Architecture, 1999(5): 60-65. |
樊洪明, 史守峡, 何钟怡. 地下直埋管道的温度场分析[J]. 哈尔滨建筑大学学报, 1999(5): 60-65. | |
46 | Fan Hongming, Jiang Yi, He Zhongyi. Thermal analysis of a straight buried pipe[J]. Journal of Tsinghua University (Science and Technology), 2002, 42(6): 806-809. |
樊洪明, 江亿, 何钟怡. 直埋管道的热力分析[J]. 清华大学学报(自然科学版), 2002, 42(6): 806-809. | |
47 | Hwang C T, Murray D W, Brooker E W. A thermal analysis for structures on permafrost[J]. Canadian Geotechnical Journal, 1972, 9(1): 33-46. |
48 | Hwang C T. Predictions and observations on the behaviour of a warm gas pipeline on permafrost[J]. Canadian Geotechnical Journal, 1976, 13(4): 452-480. |
49 | Hastaoglu M A, Hakim A A. Freezing time predictions of buried pipes: a 3-D transient simulation[J]. Chemical Engineering & Technology, 1996, 19(3): 243-248. |
50 | Chen Youchang, Song Yongtao, Ding Dewen. Simulating calculation of temperature field around oil-gathering pipelines buried on frozen ground area[J]. Oil-Gasfield Surface Engineering, 1994, 13(2): 4-7,76. |
陈友昌, 宋永涛, 丁德文. 冻土区埋地集油管线周围土壤的温度场模拟计算[J]. 油田地面工程, 1994, 13(2): 4-7,76. | |
51 | Pang Liping, Wang Jun. Research on the temperature field of the underground straight buried pipe with hot medium[J]. Acta Simulata Systematica Sinica, 2004, 16(3): 485-487, 491. |
庞丽萍, 王浚. 热介质直埋管道周围温度场仿真研究[J]. 系统仿真学报, 2004, 16(3): 485-487, 491. | |
52 | Cui Xiuguo, Zhang Jinjun. Determination of the thermal influence zone of buried hot oil pipeline on steady operation[J]. Journal of the University of Petroleum, China, 2004, 28(2): 75-78, 142. |
崔秀国, 张劲军. 埋地热油管道稳定运行条件下热力影响区的确定[J]. 石油大学学报(自然科学版), 2004, 28(2): 75-78, 142. | |
53 | He Shusheng, Yu Wenbing, Chen Wenguo, et al. Non-linear analysis of temperature fields around the buried oil-pipeline in permafrost regions, Northeast China[J]. Journal of Glaciology and Geocryology, 2008, 30(2): 287-295. |
何树生, 喻文兵, 陈文国, 等. 东北多年冻土区埋地输油管道周围温度场特征非线性分析[J]. 冰川冻土, 2008, 30(2): 287-295. | |
54 | Li Guoyu, Sheng Yu, Jin Huijun, et al. Development of freezing-thawing processes of foundation soils surrounding the China-Russia Crude Oil Pipeline in the permafrost areas under a warming climate[J]. Cold Regions Science and Technology, 2010, 64(3): 226-234. |
55 | Yu W B, Liu W B, Lai Y M, et al. Nonlinear analysis of coupled temperature-seepage problem of warm oil pipe in permafrost regions of Northeast China[J]. Applied Thermal Engineering, 2014, 70(1): 988-995. |
56 | Wang Tao, Zhou Guoqing, Yin Leijian, et al. Estimation on the influence of seepage on stochastic thermal regime of frozen ground surrounding the crude oil pipeline[J]. Cold Regions Science and Technology, 2019, 157: 13-20. |
57 | Zhang Jianming, Qu Guangzhou, Jin Huijun. Estimates on thermal effects of the China-Russia Crude Oil Pipeline in permafrost regions[J]. Cold Regions Science and Technology, 2010, 64(3): 243-247. |
58 | Cui Hui, Wu Changchun. Heat transfer and flow coupling calculation model of transient scenario for hot oil pipeline[J]. Journal of the University of Petroleum, China, 2005, 29(3): 101-105. |
崔慧, 吴长春. 热油管道非稳态工况传热与流动的耦合计算模型[J]. 石油大学学报(自然科学版), 2005, 29(3): 101-105. | |
59 | Nixon J D, MacInnes K L. Application of pipe temperature simulator for Norman Wells oil pipeline[J]. Canadian Geotechnical Journal, 1996, 33(1): 140-149. |
60 | Li Guoyu, Sheng Yu, Jin Huijun, et al. Forecasting the oil temperatures along the proposed China-Russia Crude Oil Pipeline using quasi 3-D transient heat conduction model[J]. Cold Regions Science and Technology, 2010, 64(3): 235-242. |
61 | Slusarchuk W A, Watson G H, Speer T L. Instrumentation around a warm oil pipeline buried in permafrost[J]. Canadian Geotechnical Journal, 1973, 10(2): 227-245. |
62 | Slusarchuk W A, Clark J I, Nixon J F, et al. Field test results of a chilled pipeline buried in unfrozen ground[C]//Crawford C B. Proceedings of the 3rd International Conference on Permafrost. Ottawa: The National Research Council of Canada, 1978: 878-883. |
63 | Huang S L, Bray M T, Akagawa S, et al. Field investigation of soil heave by a large diameter chilled gas pipeline experiment, Fairbanks, Alaska[J]. Journal of Cold Regions Engineering, 2004, 18(1): 2-34. |
64 | Xu Guofang, Qi Jilin, Jin Huijun. Model test study on influence of freezing and thawing on the crude oil pipeline in cold regions[J]. Cold Regions Science and Technology, 2010, 64(3): 262-270. |
65 | Carlson L E, Ellwood J R, Nixon J F, et al. Field test results of operating a chilled, buried pipeline in unfrozen ground[C]//French H M, Proceedings of the 4th Canadian Permafrost Conference. Ottawa: National Research Council of Canada, 1982: 2-6. |
66 | Carlson L E, Nixon J F. Subsoil investigation of ice lensing at the Calgary, Canada, frost heave test facility[J]. Canadian Geotechnical Journal, 1988, 25(2): 307-319. |
67 | Dallimore S. Observations and predictions of frost heave around a chilled pipeline[D]. Ottawa: Carleton University, Master of Arts, 1985. DOI: 10.22215/etd/1985-01070 . |
68 | Rajani B, Morgenstern N. Comparison of predicted and observed responses of pipeline to differential frost heave[J]. Canadian Geotechnical Journal, 1994, 31(6): 803-816. |
69 | Watson G H, Rowley R K, Slusarchuk W A. Performance of a warm-oil pipeline buried in permafrost[C]//Péwé T L, Mackay J S. Proceedings of the 2nd International Conference on Permafrost. Washington: National Academy of Sciences-National Research Council, 1973: 759-766. |
70 | Rajani B. Deformation of pipelines embedded in frozen soil[D]. Edmonton: University of Alberta, Doctor of Philosopy, 1992. |
71 | Nixon J F, Hazen B. Uplift resistance of pipelines buried in frozen ground[C]//Cheng Guodong. Proceedings of the 6th International Conference on Permafrost. Guangzhou: South China University of Technology Press, 1993: 494-499. |
72 | Christ M, Park J B, Hong S S. Laboratory observation of the response of a buried pipeline to freezing rubber-sand backfill[J]. Journal of Materials in Civil Engineering, 2010, 22(9): 943-950. |
73 | Clark J I, Phillips R. Centrifuge modelling of frost heave of arctic gas pipelines[C]//Haeberli W, Brandová D. Proceedings of the 8th International Permafrost Conference. Zurich: University of Zurich Switzerland, 2003: 21-24. |
74 | Morgan V, Clark J, Hawlader B. Modeling of frost heave of gas pipelines in Arctic conditions[C]//Sweeney M. International conference on: Terrain and geohazard challenges facing onshore oil and gas pipelines. London: Thomas Telford Publishing, 2005: 423-433. |
75 | Morgenstern N R, Nixon J F. An analysis of the performance of a warm-oil pipeline in permafrost, Inuvik, N.W.T[J]. Canadian Geotechnical Journal, 1975, 12(2): 199-208. |
76 | Morgenstern N R, Nixon J F. One-dimensional consolidation of thawing soils[J]. Canadian Geotechnical Journal, 1971, 8(4): 558-565. |
77 | Palmer A C. Settlement of pipeline on thawing permafrost[J]. Transportation Engineering Journal of ASCE, 1972, 98(3): 477-491. |
78 | Konrad J M, Morgenstern N R. Frost heave prediction of chilled pipelines buried in unfrozen soils[J]. Canadian Geotechnical Journal, 1984, 21(1): 100-115. |
79 | Konrad J M, Morgenstern N R. The segregation potential of a freezing soil[J]. Canadian Geotechnical Journal, 1981, 18(4): 482-491. |
80 | Selvadurai A P S, Hu J, Konuk I. Computational modelling of frost heave induced soil-pipeline interaction: I. Modelling of frost heave[J]. Cold Regions Science and Technology, 1999, 29(3): 215-228. |
81 | Selvadurai A P S, Hu J, Konuk I. Computational modelling of frost heave induced soil–pipeline interaction: II. Modelling of experiments at the Caen test facility[J]. Cold regions science and technology, 1999, 29(3): 229-257. |
82 | Kim K, Zhou Wei, Huang S L. Frost heave predictions of buried chilled gas pipelines with the effect of permafrost[J]. Cold Regions Science and Technology, 2008, 53(3): 382-396. |
83 | Hawlader B C, Morgan V, Clark J I. Modelling of pipeline under differential frost heave considering post-peak reduction of uplift resistance in frozen soil[J]. Canadian Geotechnical Journal, 2006, 43(3): 282-293. |
84 | Razaqpur A G, Wang Daiyu. Frost-induced deformations and stresses in pipelines[J]. International Journal of Pressure Vessels and Piping, 1996, 69(2): 105-118. |
85 | Rajani B, Zhan C, Kuraoka S. Pipe-soil interaction analysis of jointed water mains[J]. Canadian Geotechnical Journal, 1996, 33(3): 393-404. |
86 | Nixon J F, Morgenstern N R, Reesor S N. Frost heave–pipeline interaction using continuum mechanics[J]. Canadian Geotechnical Journal, 1983, 20(2): 251-261. |
87 | Wen Zhi, Sheng Yu, Jin Huijin, et al. Thermal elasto-plastic computation model for a buried oil pipeline in frozen ground[J]. Cold Regions Science and Technology, 2010, 64(3): 248-255. |
88 | Wu Yaping, Sheng Yu, Wang Yong, et al. Stresses and deformations in a buried oil pipeline subject to differential frost heave in permafrost regions[J]. Cold Regions Science and Technology, 2010, 64(3): 256-261. |
89 | Liu Jianjun, Xie Jun. Numerical simulation of thermo-hydro-mechanical coupling around underground pipelines in patchy permafrost region[J]. Rock and Soil Mechanics, 2013, 34(): 444-450. |
刘建军, 谢军. 岛状多年冻土管道周围热-水-应力耦合数值模拟[J]. 岩土力学, 2013, 34(): 444-450. | |
90 | Nixon J F, Vebo Å L. Discussion of “Frost heave and pipeline upheaval buckling”[J]. Canadian Geotechnical Journal, 2005, 42(1): 321. |
91 | Palmer A C, Williams P J. Frost heave and pipeline upheaval buckling[J]. Canadian Geotechnical Journal, 2003, 40(5): 1033-1038. |
92 | Foriero A, Ladanyi B. Pipe uplift resistance in frozen soil and comparison with measurements[J]. Journal of cold regions engineering, 1994, 8(3): 93-111. |
93 | Seligman B J. Long-term variability of pipeline-permafrost interactions in north-west Siberia[J]. Permafrost and Periglacial Processes, 2000, 11(1): 5-22. |
94 | Yuan Yundong, Xu Lie. Analysis on problems in winter operation of Sino-Kazakhstan Oil Pipeline[J]. Oil & Gas Storage and Transportation, 2009, 28(5): 66-68. |
袁运栋, 徐烈. 中哈原油管道冬季运行问题分析[J]. 油气储运, 2009, 28(5): 66-68. | |
95 | Williams Peter J. Pipelines and permafrost: Science in a cold climate[M]. Ottawa: Carleton University Press, 1986: 109-117. |
96 | Heuer C E. The application of heat pipes on the Trans-Alaska pipeline[R]. Hanover, NH(USA): Cold Regions Research and Engineering Lab., 1979. |
97 | Esch D C. Insulation performance beneath roads and airfields in Alaska[R]. Transportation Research Record, Washington, D. C. 1987: 23- 27. http://www.dot.alaska.gov/stwddes/research/assets/pdf/ak_rd_87_17.pdf. |
98 | Cheng Guodong, Zhang Jianming, Sheng Yu, et al. Principle of thermal insulation for permafrost protection[J]. Cold Regions Science and Technology, 2004, 40(1/2): 71-79. |
99 | Mu Yanhu, Wang Guoshang, Yu Qihao, et al. Thermal performance of a combined cooling method of thermosyphons and insulation boards for tower foundation soils along the Qinghai-Tibet Power Transmission Line[J]. Cold Regions Science and Technology, 2016, 121: 226-236. |
100 | Li Shuangyang, Niu Fujun, Lai Yuanming, et al. Optimal design of thermal insulation layer of a tunnel in permafrost regions based on coupled heat-water simulation[J]. Applied Thermal Engineering, 2017, 110: 1264-1273. |
101 | Cheng Guodong. A roadbed cooling approach for the construction of Qinghai-Tibet Railway[J]. Cold Regions Science and Technology, 2005, 42(2): 169-176. |
102 | Ma Wei, Cheng Guodong, Wu Qingbai. Construction on permafrost foundations: lessons learned from the Qinghai-Tibet railroad[J]. Cold Regions Science and Technology, 2009, 59(1): 3-11. |
103 | Ma Wei, Wen Zhi, Sheng Yu, et al. Remedying embankment thaw settlement in a warm permafrost region with thermosyphons and crushed rock revetment[J]. Canadian Geotechnical Journal, 2012, 49(9): 1005-1014. |
104 | Fan Shanzhi. Cooling effect of thermosyphons and air ducts mitigating thaw settlement of permafrost under the China-Russia crude oil pipeline[D]. Beijing: University of Chinese Academy of Sciences, 2017. |
范善智. 热管和通风管防治中俄原油管道热融灾害效果研究[D]. 北京: 中国科学院大学, 2017. | |
105 | Li Guoyu, Jing Hongyuan, Volkov N, et al. Centrifuge model test on performance of thermosyphon cooled sandbags stabilizing warm oil pipeline buried in permafrost[J]. Sciences in Cold and Arid Regions, 2021, 13(3): 234-255. |
106 | Zhang Yao, Michalowski R L. Thermal-hydro-mechanical analysis of frost heave and thaw settlement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(7): 4015027. |
107 | Lai Yuanming, Liao Mengke, Hu Kai. A constitutive model of frozen saline sandy soil based on energy dissipation theory[J]. International Journal of Plasticity, 2016, 78: 84-113. |
[1] | 李艳, 金会军, 温智, 赵子龙, 金晓颖. 多年冻土区斜坡稳定性研究综述[J]. 冰川冻土, 2022, 44(1): 203-216. |
[2] | 张将令, 李小二, 陈新明, 焦华喆, 李振华. 截齿滚动掘进冻土过程的影响因素数值模拟研究[J]. 冰川冻土, 2022, 44(1): 229-240. |
[3] | 彭丽云, 华小宁, 刘德欣, 齐吉琳. 秸秆加筋粉土的冻胀特性研究[J]. 冰川冻土, 2022, 44(1): 241-250. |
[4] | 李智斌, 赵林, 刘广岳, 邹德富, 汪凌霄, 杨斌, 杜二计, 胡国杰, 周华云, 王翀, 幸赞品, 赵建婷, 殷秀峰, 迟鸿飞, 谭昌海, 陈文. 冻结季沱沱河源多年冻土区活动层土壤水分含量分析[J]. 冰川冻土, 2022, 44(1): 56-68. |
[5] | 周华云, 刘广岳, 杨斌, 邹德富, 赵林, 杜二计, 谭昌海, 陈文, 杨朝磊, 文浪, 旺扎多吉, 张浔浔, 肖瑶, 胡国杰, 李智斌, 谢昌卫, 汪凌霄, 刘世博. 长江上游沱沱河源区多年冻土发育特征[J]. 冰川冻土, 2022, 44(1): 69-82. |
[6] | 刘广岳, 邹德富, 杨斌, 杜二计, 周华云, 肖瑶, 赵林, 谭昌海, 胡国杰, 庞强强, 王武, 孙哲, 朱小凡, 殷秀峰, 汪凌霄, 李智斌, 谢昌卫. 青藏高原腹地各拉丹冬南北坡多年冻土考察初步结果[J]. 冰川冻土, 2022, 44(1): 83-95. |
[7] | 罗京, 牛富俊, 林战举, 刘明浩, 尹国安, 高泽永. 青藏高原多年冻土区热融滑塌发育特征及规律[J]. 冰川冻土, 2022, 44(1): 96-105. |
[8] | 李飞,郭佳锴,张世强. VIC-CAS导热率和未冻水算法改进及其对多年冻土水热过程模拟的实验研究[J]. 冰川冻土, 2021, 43(6): 1888-1903. |
[9] | 王一博,吕明侠,赵海鹏,高泽永. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1301-1311. |
[10] | 范星文,林战举,罗京,刘明浩,尹国安,高泽永. 高海拔多年冻土区路基工程行为对低温多年冻土长期影响的监测研究[J]. 冰川冻土, 2021, 43(5): 1323-1333. |
[11] | 王蓝翔,董慧科,龚平,王传飞,吴晓东. 多年冻土退化下碳、氮和污染物循环研究进展[J]. 冰川冻土, 2021, 43(5): 1365-1382. |
[12] | 冯晓琳,张艳林,常晓丽. 大兴安岭湿地多年冻土区活动层水热特征分析[J]. 冰川冻土, 2021, 43(5): 1468-1479. |
[13] | 赵容舟,梁二雷,姚晓亮,余帆. 冻融作用对不同初始状态基坑稳定性的影响研究[J]. 冰川冻土, 2021, 43(5): 1480-1488. |
[14] | 温理想,郭蒙,黄书博,于方冰,钟超,周粉粉. 大兴安岭北部多年冻土区植被对活动层厚度变化的响应[J]. 冰川冻土, 2021, 43(5): 1531-1541. |
[15] | 周晓宇, 赵春雨, 李娜, 刘鸣彦, 崔妍, 敖雪. 东北地区冬半年积雪与气温对冻土的影响[J]. 冰川冻土, 2021, 43(4): 1027-1039. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000