[1] Monteith J L. Evaporation and environment[C]//19th Symposia of the Society for Experimental Biology. Cambridge, Eng.: Cambridge University Press, 1964: 205-234. [2] Bastiaanssen W G M, Menenti M, Feddes R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation[J]. Journal of Hydrology, 1998, 212(1/2/3/4): 198-212. [3] Menenti M, Choudhury B J. Parameterization of land surface evaporation by means of location dependent potential evaporation and surface temperature range[M]//Exchange Processes at the Land Surface for a Range of Space and Time Scales. Wallingford, Eng.: IAHS Press, 1993: 561-568. [4] Roerink G J, Su Z, Menenti M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance[J]. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 2000, 25(2): 147-157. [5] Su Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences, 2002, 6(1): 85-99. [6] Mu Q, Zhao M, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1781-1800. [7] Long D, Singh V P. A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery[J]. Remote Sensing of Environment, 2012, 121: 370-388. [8] Allen R, Irmak A, Trezza R, et al. Satellite-based ET estimation in agriculture using SEBAL and METRIC[J]. Hydrological Processes, 2011, 25(26): 4011-4027. [9] Bhattarai N, Dougherty M, Marzen L J, et al. Validation of evaporation estimates from a modified surface energy balance algorithm for land (SEBAL) model in the south-eastern United States[J]. Remote Sensing Letters, 2012, 3(6): 511-519. [10] Papadavid G, Hadjimitsis D, Toulios L, et al. A modified SEBAL modeling approach for estimating crop evapotranspiration in semi-arid conditions[J]. Water Resources Management, 2013, 27(9): 3493-3506. [11] Paul G, Gowda P H, Prasad P V V, et al. Lysimetric evaluation of SEBAL using high resolution airborne imagery from BEAREX08[J]. Advances in Water Resources, 2013, 59: 157-168. [12] Yang Y T, Shang S H, Jiang L. Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China[J]. Agricultural and Forest Meteorology, 2012, 164: 112-122. [13] Long D, Singh V P, Li Z-L. How sensitive is SEBAL to changes in input variables, domain size and satellite sensor[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D21). doi:10.1029/2011JD016542. [14] Gao Z Q, Liu C S, Gao W, et al. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration over heterogeneous terrain[J]. Hydrology and Earth System Sciences, 2011, 15(1): 119-139. [15] Morton C G, Huntington J L, Pohll G M, et al. Assessing calibration uncertainty and automation for estimating evapotranspiration from agricultural areas using METRIC[J]. Journal of the American Water Resources Association, 2013, 49(3): 549-562. [16] Allen R G, Burnett B, Kramber W, et al. Automated calibration of the METRIC-Landsat evapotranspiration process[J]. Journal of the American Water Resources Association, 2013, 49(3): 563-576. [17] Feng J, Wang Z. A satellite-based energy balance algorithm with reference dry and wet limits[J]. International Journal of Remote Sensing, 2013, 34(8): 2925-2946. [18] Long D, Singh V P. A modified surface energy balance algorithm for land (M-SEBAL) based on a trapezoidal framework[J]. Water Resources Research, 2012, 48(2). doi:10.1029/2011WR010607. [19] Cheng Guodong, Xiao Honglang, Xu Zhongmin, et al. Water issue and its countermeasure in the inland river basins of Northwest China[J]. Journal of Glaciology and Geocryology, 2006, 28(3): 406-413. [程国栋, 肖洪浪, 徐中民, 等. 中国西北内陆河水问题及其应对策略: 以黑河流域为例[J]. 冰川冻土, 2006, 28(3): 406-413.] [20] Ding Hongwei, Hu Xinglin, Lan Yongchao, et al. Characteristics and conversion of water resources in the Heihe River Basin[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1460-1469. [丁宏伟, 胡兴林, 蓝永超, 等. 黑河流域水资源转化特征及其变化规律[J]. 冰川冻土, 2012, 34(6): 1460-1469.] [21] Xu Fengying, Ge Yingchun, Xu Zhongmin, et al. A review of evaluation methods of crop water productivity[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 156-163. [徐凤英, 盖迎春, 徐中民, 等. 作物水生产力评估方法研究[J]. 冰川冻土, 2013, 35(1): 156-163.] [22] Ge Yingchun, Li Xin. Water resources management decision support system: Review and prospect[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1248-1256. [盖迎春, 李新. 水资源管理决策支持系统研究进展与展望[J]. 冰川冻土, 2012, 34(5): 1248-1256.] [23] Liu Suhua, Wang Weizhen, Kobayashi T. The evaporation from irrigation channels estimated by energy balance method in the middle reaches of the Heihe River[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 80-87. [刘素华, 王维真, 小林哲夫. 基于能量平衡法的黑河中游灌溉渠道蒸发量估算[J]. 冰川冻土, 2014, 36(1): 80-87.] [24] Li X, Cheng G D, Liu S M, et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design[J]. Bulletin of the American Meteorological Society, 2013, 94(8): 1145-1160. [25] Li Xin, Liu Shaomin, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(5): 481-498. [李新, 刘绍民, 马明国, 等. 黑河流域生态-水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498.] [26] Bastiaanssen W G M, Noordman E, Pelgrum H, et al. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions[J]. Journal of Irrigation and Drainage Engineering, 2005, 131(1): 85-93. [27] Frey C M, Parlow E. Flux measurements in Cairo. Part 2: On the determination of the spatial radiation and energy balance using ASTER satellite data[J]. Remote Sensing, 2012, 4(9): 2635-2660. [28] Jiménez J C, Sobrino J A. Feasibility of retrieving land-surface temperature from ASTER TIR bands using two-channel algorithms: A case study of agricultural areas[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 60-64. [29] Sobrino J A, Jiménez J C, S ria G, et al. Land surface emissivity retrieval from different VNIR and TIR sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(2): 316-327. [30] Ren H Z, Liang S L, Yan G J, et al. Empirical algorithms to map global broadband emissivities over vegetated surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 2619-2631. [31] Brutsaert W. On a derivable formula for long-wave radiation from clear skies[J]. Water Resources Research, 1975, 11(5): 742-744. [32] Allen R G, Tasumi M, Trezza R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC): Model[J]. Journal of Irrigation and Drainage Engineering, 2007, 133(4): 380-394. [33] Moran M, Clarke T, Inoue Y, et al. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[J]. Remote Sensing of Environment, 1994, 49(3): 246-263. [34] Kustas W, Anderson M. Advances in thermal infrared remote sensing for land surface modeling[J]. Agricultural and Forest Meteorology, 2009, 149(12): 2071-2081. [35] Carlson T N, Ripley D A. On the relation between NDVI, fractional vegetation cover, and leaf area index[J]. Remote Sensing of Environment, 1997, 62(3): 241-252. [36] Xu Z, Liu S, Li X, et al. Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(23): 13140-13157. [37] Liu S M, Xu Z W, Wang W Z, et al. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem[J]. Hydrology and Earth System Sciences, 2011, 15(4): 1291-1306. [38] Wang Jiemin, Gao Youxi, Hu Yinqiao, et al. An overview of the HEIFE experiments in the People's Republic of China[M]//Exchange Processes at the Land Surface for a Range of Space and Time Scales. Wallingford, Eng.: IAHS Press, 1993: 397-406. [39] Wang Jiemin, Wang Weizhen, Liu Shaomin, et al. The problems of surface energy balance closure: An overview and case study[J]. Advances in Earth Science, 2009, 24(7): 705-713. [王介民, 王维真, 刘绍民, 等. 近地层能量平衡闭合问题: 综述及个例分析[J]. 地球科学进展, 2009, 24(7): 705-713.] [40] Stannard D, Blanford J, Kustas W, et al. Interpretation of surface flux measurements in heterogeneous terrain during the Monsoon'90 experiment[J]. Water Resources Research, 1994, 30(5): 1227-1239. [41] Blanken P, Black T A, Yang P, et al. Energy balance and canopy conductance of a boreal aspen forest: partitioning overstory and understory components[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D24): 28915-28927. [42] Twine T E, Kustas W, Norman J, et al. Correcting eddy-covariance flux underestimates over a grassland[J]. Agricultural and Forest Meteorology, 2000, 103(3): 279-300. |