[1] Jiang Xi. Progress in the research of snow and ice albedo[J]. Journal of Glaciology and Geocryology, 2006, 28(5):728-738.[蒋熹. 冰雪反照率研究进展[J]. 冰川冻土, 2006, 28(5):728-738.][2] Rechid D, Raddatz T J, Jacob D. Parameterization of snow-free land surface albedo as a function of vegetation phenology based on MODIS data and applied in climate modelling[J]. Theoretical and Applied Climatology, 2009, 95(3/4):245-255.[3] Sun Yanhua, Huang Xiaodong, Wang Wei, et al. Spatio-temporal changes of snow cover and snow water equivalent in Tibetan Plateau during 2003-2010[J]. Journal of Glaciology and Geocryology, 2014, 36(6):1337-1344. [孙燕华, 黄晓东, 王玮, 等. 2003-2010年青藏高原积雪及雪水当量的时空变化[J]. 冰川冻土, 2014, 36(6):1337-1344.][4] Yang Xingguo, Qin Dahe, Qin Xiang. Progress in the study of interaction between ice/snow and atmosphere[J]. Journal of Glaciology and Geocryology, 2012, 34(2):392-402. [杨兴国, 秦大河, 秦翔. 冰川/积雪-大气相互作用研究进展[J]. 冰川冻土, 2012, 34(2):392-402.][5] Sellers P J, Meeson B W, Hall F G, et al. Remote sensing of the land surface for studies of global change:Models-algorithms-experiments[J]. Remote Sensing of Environment, 1995, 51(1):3-26.[6] Wang Jie, He Xiaobo, Ye Baisheng, et al.Variations of albedo on the Dongkemadi Glacier, Tanggula Range[J]. Journal of Glaciology and Geocryology, 2012, 34(1):21-28.[王杰, 何晓波, 叶柏生, 等. 唐古拉山冬克玛底冰川反照率变化特征研究[J]. 冰川冻土, 2012, 34(1):21-28.][7] Kokhanovsky A A, Beron F M. Validation of an analytical snow BRDF model using PARASOL multi-angular and multispectral observations[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5):928-932.[8] Strugnell N C, Lucht W. An algorithm to infer continental-scale albedo from AVHRR data, land cover class, and field observations of typical BRDFs[J]. Journal of Climate, 2001,14(7):1360-1376.[9] Hall D K, Riggs G A, Salomonson V V, et al. MODIS snow-cover products[J]. Remote Sensing of Environment, 2002, 83(1):181-194.[10] Liu Q, Wang L, Qu Y, et al. Preliminary evaluation of the long-term GLASS albedo product[J]. International Journal of Digital Earth, 2013, 6(S1):69-95.[11] Liang S, Stroeve J, Box J E. Mapping daily snow/ice shortwave broadband albedo from Moderate Resolution Imaging Spectroradiometer (MODIS):The improved direct retrieval algorithm and validation with Greenland in situ measurement[J]. Journal of Geophysical Research:Atmospheres, 2005, 110. doi:10.1029/2004JD005493.[12] Stroeve J, Box J E, Gao F, et al. Accuracy assessment of the MODIS 16-day albedo product for snow:comparisons with Greenland in situ measurements[J]. Remote Sensing of Environment, 2005, 94(1):46-60.[13] Huang Xiaodong, Zhang Xuetong, Li Xia, et al.Accuracy analysis for MODIS snow products of MOD10A1 and MOD10A2 in northern Xinjiang, China[J]. Journal of Glaciology and Geocryology, 2007, 29(5):721-729.[黄晓东, 张学通, 李霞, 等. 北疆牧区MODIS积雪产品MOD10A1和MOD10A2的精度分析与评价[J]. 冰川冻土, 2007, 29(5):721-729.][14] Tang Zhiguang, Wang Jian, Li Hongyi, et al. Accuracy validation and cloud obscuration removal of MODIS fractional snow cover products over Tibetan Plateau[J]. Remote Sensing Technology and Application, 2013, 28(3):423-430. [唐志光, 王建, 李弘毅, 等. 青藏高原MODIS积雪面积比例产品的精度验证与去云研究[J]. 遥感技术与应用, 2013, 28(3):423-430.][15] Li Hongyi, Wang Jian, Hao Xiaohua. Influence of blowing snow on snow mass and energy exchange in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2012, 34(5):1084-1090. [李弘毅, 王建, 郝晓华. 祁连山区风吹雪对积雪质能过程的影响[J]. 冰川冻土, 2012, 34(5):1084-1090.][16] Stroeve J C, Box J E, Haran T. Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet[J]. Remote Sensing of Environment, 2006, 105(2):155-171.[17] Tekeli A E, Sensoy A, Sorman A, et al. Accuracy assessment of MODIS daily snow albedo retrievals within situ measurements in Karasu basin, Turkey[J]. Hydrological Processes, 2006, 20(4):705-721.[18] Wang Jie, Ye Baisheng, Cui Yuhuan, et al. Accuracy assessment of MODIS daily snow albedo product based on scaling transformation[C]//Proceedings of International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE 2011), Nanjing, 2011:2865-2870.[19] Mao Ruijuan, Jiang Xi, Guo Zhongming, et al.Study of the inversion precision of albedo on the Qiyi Glacier in the Qilian Mountain based on TM/ETM+ image[J]. Journal of Glaciology and Geocryology, 2013, 35(2):301-309. [毛瑞娟, 蒋熹, 郭忠明, 等. 基于TM/ETM+影像反演祁连山七一冰川反照率精度比较研究[J]. 冰川冻土, 2013, 35(2):301-309.][20] Zheng Pu, Deng Zhengdong, Guan Hongjun, et al. Study of the snow cover extraction method based on ETM+ data:Take Manas River basin as an example[J]. Journal of Glaciology and Geocryology, 2014, 36(5):1151-1159. [郑璞, 邓正栋, 关洪军, 等. 基于ETM+的积雪提取方法研究:以新疆玛纳斯河流域为例[J]. 冰川冻土, 2014, 36(5):1151-1159.][21] Huang Xiaodong, Hao Xiaohua, Wang Wei, et al. Algorithms for cloud removal in MODIS daily snow products[J]. Journal of Glaciology and Geocryology, 2012, 34(5):1118-1126. [黄晓东, 郝晓华, 王玮, 等. MODIS逐日积雪产品去云算法研究[J]. 冰川冻土, 2012, 34(5):1118-1126.][22] Kelly R E, Chang A T, Tsang L, et al. A prototype AMSR-E global snow area and snow depth algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2):230-242.[23] Essery R, Morin S, Lejeune Y, et al. A comparison of 1701 snow models using observations from an alpine site[J]. Advances in Water Resources, 2013, 55:131-148.[24] Liang S. Narrowband to broadband conversions of land surface albedo I:Algorithms[J]. Remote Sensing of Environment, 2001, 76(2):213-238.[25] Xue H, Wang J, Xiao Z, et al. Combining MODIS and AMSR-E observations to improve MCD43A3 short-time snow-covered albedo estimation[J]. Hydrological Processes, 2014, 28(3):570-580.[26] Wang Z, Schaaf C B, Chopping M J, et al. Evaluation of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra[J]. Remote Sensing of Environment, 2012, 117:264-280.[27] Liang S, Fang H, Chen M, et al. Validating MODIS land surface reflectance and albedo products:Methods and preliminary results[J]. Remote Sensing of Environment, 2002, 83(1):149-162.[28] Wiscombe W J, Warren S G. A model for the spectral albedo of snow. I:Pure snow[J]. Journal of the Atmospheric Sciences, 1980, 37(12):2712-2733.[29] Curry J A, Schramm J L, Perovich D K, et al. Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations[J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D14):15345-15355.[30] Pedersen C A, Winther J G. Intercomparison and validation of snow albedo parameterization schemes in climate models[J]. Climate Dynamics, 2005, 25(4):351-362.[31] Kim J, Ek M. A simulation of the surface energy budget and soil water content over the Hydrologic Atmospheric Pilot Experiments-Modélisation du Bilan Hydrique forest site[J]. Journal of Geophysical Research:Atmospheres, 1995, 100(D10):20845-20854.[32] Mitchell K E, Lohamann D, Houser P R, et al.The multi-institution North American Land Data Assimilation System (NLDAS):Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system[J]. Journal of Geophysical Research:Atmospheres, 2004, 109(D7). doi:10.1029/2003JD003823.[33] Monroe J W. Evaluating NARR surface reanalysis variables and NLDAS using Oklahoma Mesonet observations[D]. Norman, OK:University of Oklahoma, 2007.[34] Koren V, Schaake J, Mitchell K, et al. A parameterization of snowpack and frozen ground intended for NCEP weather and climate models[J]. Journal of Geophysical Research:Atmopshere, 1999, 104(D16):19569-19585.[35] Malik M J, Velde R, Vekerdy Z, et al. Assimilation of satellite-observed snow albedo in a land surface model[J]. Journal of Hydrometeorology, 2012, 13(3):1119-1130.[36] Painter T H, Dozier J. Measurements of the hemispherical-directional reflectance of snow at fine spectral and angular resolution[J]. Journal of Geophysical Research:Atmospheres, 2004, 109(D18). doi:10.1029/2003JD004458. |