X img

官方微信

img

群号:冰川冻土交流群

QQ群:218834310

高级检索
作者投稿 专家审稿 编辑办公 编委办公 主编办公

冰川冻土 ›› 2015, Vol. 37 ›› Issue (1): 49-57.doi: 10.7522/j.issn.1000-0240.2015.0005

• 冰冻圈与全球变化 • 上一篇    下一篇

祁连山区MODIS积雪反照率产品的精度验证及云下积雪反照率估算研究

潘海珠1,2, 王建1, 李弘毅1   

  1. 1. 中国科学院 寒区旱区环境与工程研究所, 甘肃 兰州 730000;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2014-08-19 修回日期:2014-12-28 出版日期:2015-02-25 发布日期:2015-03-23
  • 通讯作者: 王建,E-mail:wjian@lzb.ac.cn. E-mail:wjian@lzb.ac.cn
  • 作者简介:潘海珠(1988-),男,山东枣庄人,2012年毕业于山东农业大学,现为中国科学院寒区旱区环境与工程研究所在读硕士研究生,主要从事积雪遥感及积雪过程参数化方案研究.E-mail:haizhupan@gmail.com
  • 基金资助:

    中国科学院"西部行动计划"项目(KZCX2-XB3-15); 国家自然科学基金项目(41201339; 41471358)资助

Accuracy validation of the MODIS snow albedo products and estimate of the snow albedo under cloud over the Qilian Mountains

PAN Haizhu1,2, WANG Jian1, LI Hongyi1   

  1. 1. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2014-08-19 Revised:2014-12-28 Online:2015-02-25 Published:2015-03-23

摘要:

积雪反照率在全球气候和能量收支平衡模型中起着重要的作用. 利用祁连山地区大冬树垭口站点反照率实测数据对由TM/ETM+得到的反照率数据进行标定, 然后将TM/ETM+反照率数据通过升尺度对MODIS逐日积雪反照率(SAD)产品在晴空条件下的精度进行了验证. 同时, 发展了一个基于MODIS SAD与AMSR-E SWE数据融合并结合Noah积雪反照率参数化方案估算MODIS SAD数据云下积雪反照率的算法, 通过统计分析纠正了云对积雪反照率的影响, 对云下积雪反照率进行了验证分析. 结果表明:MODIS SAD产品在祁连山地区的精度要低于大面积积雪覆盖的平坦地区(如格陵兰岛), 其平均绝对误差及均方根误差分别为0.0548和0.0727; 云下积雪反照率估算方法可以有效地获取云覆盖下积雪像元的反照率值, 纠正后的无云MODIS SAD数据与地面观测值有较好的一致性, 其平均绝对误差为0.078.

关键词: MODIS逐日积雪反照率, AMSR-E SWE, Noah LSM, 云下积雪反照率

Abstract:

Snow surface albedo plays an important role in the radiation budget and global climate models. In this paper, the observed albedo data are used to calculate the surface albedo as the true value to validate the albedo derived from TM/ETM+ image at 30 m, then the TM/ETM+ albedo is aggregated to 500 m resolution and compared with the MOD10A1 snow albedo daily (SAD). The results show that MODIS SAD products do not reflect snow albedo very well over mountains. However, the overall absolute error, standard deviation for the MODIS SAD products is 0.0548 and 0.0727, respectively, so it still can be used to study the snow cover change. A method for estimating snow albedo under cloud is developed. By using the MOD10A1 SAD and AMSR-E snow water equivalent (SWE) products, the snow under cloud is recognized, then use the SWE and Nash LSM snow albedo model to estimate the snow albedo under cloud. We can use this method to produce MODIS daily cloudless snow albedo product. The observed albedo data are used to validate the accuracy of the new SAD product. There is a relatively consistency between the MODIS SAD products after cloud removal and the observed ones, with an overall absolute error of 0.078.

Key words: MODIS snow albedo daily, AMSR-E SWE, Noah LSM, snow surface albedo under cloud

中图分类号: 

  • P426.63/TP79