X img

官方微信

img

群号:冰川冻土交流群

QQ群:218834310

高级检索
作者投稿 专家审稿 编辑办公 编委办公 主编办公

冰川冻土 ›› 2015, Vol. 37 ›› Issue (4): 1050-1058.doi: 10.7522/j.issn.1000-0240.2015.0117

• 寒区科学与技术 • 上一篇    下一篇

干旱半干旱区土壤含盐量和电导率高光谱估算

李相1 2, 丁建丽1 2, 侯艳军1 2, 邓凯1 2   

  1. 1. 新疆大学 资源与环境科学学院, 新疆 乌鲁木齐 830046;
    2. 绿洲生态教育部重点实验室, 新疆 乌鲁木齐 830046
  • 收稿日期:2015-04-07 修回日期:2015-06-13 出版日期:2015-08-25 发布日期:2016-01-18
  • 通讯作者: 丁建丽, E-mail: ding_jl@163.com. E-mail:ding_jl@163.com
  • 作者简介:李相(1991-), 男, 河南商丘人, 2013年毕业于新疆农业大学, 现为新疆大学在读硕士研究生, 主要从事干旱区资源环境遥感研究. E-mail: lixiang91526@163.com
  • 基金资助:
    自治区科技支疆项目(201504051064); 国家自然科学基金项目(U1303381; 41261090; 41130531; 41161063); 教育部新世纪优秀人才支持计划项目(NCET-12-1075); 2015年新疆维吾尔自治区研究生科研创新项目(XJGRI2015018)资助

Estimating the soil salt content and electrical conductivity in semi-arid and arid areas by using hyperspectral data

LI Xiang1 2, DING Jianli1 2, HOU Yanjun1 2, DENG Kai1 2   

  1. 1. College of Research and Environment Science, Xinjiang University, Vrümqi 830046, China;
    2. Laboratory for Oasis Ecosystem, Ministry of Education, Vrümqi 830046, China
  • Received:2015-04-07 Revised:2015-06-13 Online:2015-08-25 Published:2016-01-18

摘要: 以新疆南疆地区渭干河-库车河三角洲绿洲不同盐渍化程度的土壤为研究对象, 将土壤样品的含盐量与电导率数据和使用ASD FieldSpec Pro FR光谱仪测得土壤样品高光谱数据作为本研究原始数据. 首先, 对原始土壤光谱反射率曲线进行Savitzky-Golay滤波以消除光谱曲线噪声可能引起的误差, 对得到的光谱曲线进行对数、 倒数等15种光谱变换; 其次, 对土壤样品含盐量与电导率关系进行分析, 并通过两者与土壤光谱反射率不同光谱变换形式的相关性比较分析, 遴选出一阶微分、 对数倒数一阶微分、 连续统去除和连续统去除一阶微分四种相关性较好的变换形式; 最后, 以此变换形式对含盐量和电导率进行建模, 并对二者进行了高光谱估算精度的比较. 结果表明: 渭干河-库车河三角洲绿洲的含盐量与电导率的相关性较高, 达到0.9975; 电导率与四种不同光谱变换形式之间的相关性要优于含盐量, 特别在一些土壤盐渍化的敏感波段尤为突出; 无论是含盐量还是电导率, 多元逐步回归模型均优于一元线性模型, 且以电导率建立的两种回归模型的决定系数均高于含盐量. 研究表明, 土壤电导率对高光谱信息的反应比含盐量更敏感, 同时, 以电导率建模的估算精度比含盐量更高. 因此, 以电导率替代含盐量进行土壤盐渍化高光谱估算研究是一种精度更高、 速度更快的方法, 可为提高土壤盐渍化高光谱估算提供理论依据.

关键词: 土壤含盐量, 土壤电导率, 高光谱, 多元逐步回归

Abstract: The objective of this study is to ascertain the mechanisms of hyperspectral remote sensing monitoring soil salinization, which is of great importance for improving the accuracy of hyperspectral remote sensing monitoring. The soil samples were collected from the delta oasis between the Weigan River and the Kuqa River in the north rim of the Tarim basin, which were taken to laboratory for measuring the salt content (SC) and electrical conductivity (EC). Hyperspectral images were obtained via ASD FieldSpec Pro FR and were regarded as basic data sources. Hyperspectral images were deal with Savitzky-Golay filtering for noise smoothing, and were transformed via 15 different approaches, including logarithm, inversion, root mean squares, continuum removed and first order differential, etc. Through comparative analysis of correlations with SC, EC and different approaches, it is found that the following four approaches have better correlations: first order differential, log-inverse first order differential, continuum removed and continuum removed first order differential. Relationship between SC and EC were studied. Correlations between hyperspectral indices and SC and EC were analyzed. The estimation accuracy of SC through hyperspectral technique was compared with that of EC. Results show that there is significant correlation between SC and EC in delta oasis between the Weigan River and the Kuqa River. The correlations between EC and first order differential, log-inverse first order differential, continuum removed, and continuum removed first order differential are better than those of SC, which is significant in some sensitive bands with soil salinization. The coefficient of determination (R2) of model is established by using stepwise multivariate linear regression, which is better than that established by using simple linear regression. Therefore, the responses of high spectral information to EC are more sensitive than those of high spectral information to SC. Accuracy of EC predicted from high spectral data is higher than that of SC estimated from high spectral data. This study will provide a theoretical basis to improve hyperspectral remote sensing estimating accuracy of soil salinization.

Key words: soil salt content, electrical conductivity, hyperspectral, stepwise multiple linear regression

中图分类号: 

  • S153