冰川冻土 ›› 2015, Vol. 37 ›› Issue (6): 1544-1554.doi: 10.7522/j.issn.1000-0240.2015.0171
刘敏1 2, 金会军1, 罗栋梁1, 王庆峰1, 金晓颖1 2, 李晓英1 2, 吕兰芝1
收稿日期:
2015-08-15
修回日期:
2015-11-16
出版日期:
2015-12-25
发布日期:
2016-05-11
通讯作者:
金会军,E-mail:hjjin@lzb.ac.cn.
E-mail:hjjin@lzb.ac.cn
作者简介:
刘敏(1992-),男,江西九江人,2013年毕业于武汉大学,现为中国科学院寒区旱区环境与工程研究所在读硕士研究生,主要从事青藏高原碳循环研究.E-mail:dismusic@whu.edu.cn
基金资助:
LIU Min1 2, JIN Huijun1, LUO Dongliang1, WANG Qingfeng1, JIN Xiaoyin1 2, LI Xiaoying1 2, Lü Lanzhi1
Received:
2015-08-15
Revised:
2015-11-16
Online:
2015-12-25
Published:
2016-05-11
摘要: 青藏高原土壤碳排放研究是评估国家区域碳排放量和预测气候变化所可能导致影响的关键. 首先对青藏高原土壤碳排放的关键性影响因子进行探讨, 并分析了土壤碳排放的时空分布格局变化. 目前青藏高原土壤碳排放研究主要是针对高寒草甸及高寒草地生态系统, 较少涉及高寒荒漠, 研究区域较为分散; 土壤碳排放受到气候环境因素、生物因素及人为因素等多重因素的影响, 其中温度、土壤湿度、土壤区系生物、人为因素及多年冻土退化是最关键的影响因素; 土壤碳排放具有明显的时空变异性, 空间变异性在生物群丛、景观、区域和生物群系四个尺度体现, 时间变异性在日、季、年上体现. 总体而言, 青藏高原土壤碳排放的研究较少, 尤其关于大尺度、长时间序列的研究以及土壤碳排放的机理等方面的研究十分缺乏, 有待于后续加强研究.
中图分类号:
刘敏, 金会军, 罗栋梁, 王庆峰, 金晓颖, 李晓英, 吕兰芝. 青藏高原土壤碳排放研究进展[J]. 冰川冻土, 2015, 37(6): 1544-1554.
LIU Min, JIN Huijun, LUO Dongliang, WANG Qingfeng, JIN Xiaoyin, LI Xiaoying, Lü Lanzhi. Progress in studies of carbon emission from soil on the Qinghai-Tibetan Plateau[J]. JOURNAL OF GLACIOLOGY AND GEOCRYOLOGY, 2015, 37(6): 1544-1554.
[1] Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming[J]. Nature, 1991, 351(6324):304-306. [2] Lal R. Sequestration of atmospheric CO2 in global carbon pools[J]. Energy & Environmental Science, 2008, 1(1):86-100. [3] Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones[J]. Nature, 1982, 298(5870):156-159. [4] Lal R. Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands[J]. Land Degradation & Development, 2006, 17(2):197-209. [5] Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440(7081):165-173. [6] Bockheim J G, Munroe J S. Organic carbon pools and genesis of alpine soils with permafrost:A review[J]. Arctic Antarctic and Alpine Research, 2014, 46(4):987-1006. [7] Pan Gengxin, Cao Jianhua, Zhou Yunchao. Soil carbon and its significance in carbon cycling of earth surface system[J]. Quaternary Sciences, 2000, 20(4):325-334.[潘根兴, 曹建华, 周运超. 土壤碳及其在地球表层系统碳循环中的意义[J]. 第四纪研究, 2000, 20(4):325-334.] [8] Dorfer C, Kuhn P, Baumann F, et al. Soil organic carbon pools and stocks in permafrost-affected soils on the tibetan plateau[J]. Plos One, 2013, 8(2):9. [9] Zimov S A, Schuur E A G, Chapin F S. Permafrost and the global carbon budget[J]. Science, 2006, 312(5780):1612-1613. [10] Redclift M R, Grasso M. Handbook on climate change and human security[M]. Cheltenham, UK, Northampton, MA, USA:Edward Elgar, 2013. [11] DeConto R M, Galeotti S, Pagani M, et al. Past extreme warming events linked to massive carbon release from thawing permafrost[J]. Nature, 2012, 484(7392):87-91. [12] Zheng Du, Zhang Qingsong, Wu Shaohong. Mountain geoecology and sustainable development of the Tibetan Plateau[M]. Dordrecht, Boston:Kluwer Academic Publishers, 2000. [13] Mu Cuicui, Zhang Tingjun, Wu Qingbai, et al. Editorial:Organic carbon pools in permafrost regions on the Qinghai-Xizang (Tibetan) Plateau[J]. Cryosphere, 2015, 9(2):479-486. [14] Grabherr G, Gottfried M, Pauli H. Climate effects on mountain plants[J]. Nature, 1994, 369(6480):448-448. [15] Grabherr G, Gottfried M, Pauli H. High mountain environment as indicator of global change[J]. Global Change and Protected Areas, 2001, 9:331-345. [16] Thomas C D, Cameron A, Green R E, et al. Extinction risk from climate change[J]. Nature, 2004, 427(6970):145-148. [17] Gottfried M, Pauli H, Futschik A, et al. Continent-wide response of mountain vegetation to climate change[J]. Nature Climate Change, 2012, 2(2):111-115. [18] Wang Genxu, Li Yuanshou, Wang Yibo, et al. Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai-Tibet Plateau, China[J]. Geoderma, 2008, 143(1/2):143-152. [19] Chen Huai, Yang Gang, Peng Changhui, et al. The carbon stock of alpine peatlands on the Qinghai-Tibetan Plateau during the holocene and their future fate[J]. Quaternary Science Reviews, 2014, 95:151-158. [20] Laurioni Vincent W F, Macintyre S, et al. Variability in greenhouse gas emissions from permafrost thaw ponds[J]. Limnology and Oceanography, 2010, 55(1):115-133. [21] Sun Xiaoxin, Song Changchun, Wang Xianwei, et al. Effect of permafrost degradation on methane emission in wetlands:A review[J]. Acta Ecologica Sinica, 2011, 31(18):5379-5386.[孙晓新, 宋长春, 王宪伟, 等. 多年冻土退化对湿地甲烷排放的影响研究进展[J]. 生态学报, 2011, 31(18):5379-5386.] [22] Kong Fanli, Luo Yue'e. International carbon-political games and China's countermeasures[J]. Journal of Tianshui College of Administration, 2010(4):54-57.[孔凡立, 罗月娥. 全球化时代国际"碳政治"博弈与中国的战略选择[J]. 天水行政学院学报, 2010(4):54-57.] [23] Trumbore S E, Chadwick O A, Amundson R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change[J]. Science, 1996, 272(5260):393-396. [24] Li Yuanyuan, Dong Shikui, Liu Shiliang, et al. Seasonal changes of CO2, CH4 and N2O fluxes in different types of alpine grassland in the Qinghai-Tibetan Plateau of China[J]. Soil Biology & Biochemistry, 2015, 80:306-314. [25] Peng Fei, Xue Xian, You Quangang, et al. Warming effects on carbon release in a permafrost area of Qinghai-Tibet Plateau[J]. Environmental Earth Sciences, 2015, 73(1):57-66. [26] Wu Yibo, Zhang Jing, Deng Yongcui, et al. Effects of warming on root diameter, distribution, and longevity in an alpine meadow[J]. Plant Ecology, 2014, 215(9):1057-1066. [27] Jing Xin, Wang Yonghui, Chung Haegeun, et al. No temperature acclimation of soil extracellular enzymes to experimental warming in an alpine grassland ecosystem on the Tibetan Plateau[J]. Biogeochemistry, 2014, 117(1):39-54. [28] Crill P M, Bartlett K B, Wilson J O, et al. Tropospheric methane from an amazonian floodplain lake[J]. Journal of Geophysical Research-Atmospheres, 1988, 93(D2):1564-1570. [29] Frolking S, Crill P. Climate controls on temporal variability of methane flux from a poor fen in southeastern new-hampshire-measurement and modeling[J]. Global Biogeochemical Cycles, 1994, 8(4):385-397. [30] Yang Gang, Chen Huai, Wu Ning, et al. Effects of soil warming, rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China[J]. Soil Biology & Biochemistry, 2014, 78:83-89. [31] Peng Fei, You Quangang, Xu Manhou, et al. Effects of warming and clipping on ecosystem carbon fluxes across two hydrologically contrasting years in an alpine meadow of the Qinghai-Tibet Plateau[J]. Plos One, 2014, 9(10):14. [32] Peng Fei, You Quangang, Xu Manhou, et al. Effects of experimental warming on soil respiration and its components in an alpine meadow in the permafrost region of the Qinghai-Tibet Plateau[J]. European Journal of Soil Science, 2015, 66(1):145-154. [33] Qin Yu, Yi Shuhua, Chen Jianjun, et al. Responses of ecosystem respiration to short-term experimental warming in the alpine meadow ecosystem of a permafrost site on the Qinghai-Tibetan Plateau[J]. Cold Regions Science and Technology, 2015, 115:77-84. [34] Rustad L E, Campbell J L, Marion G M, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(4):543-562. [35] Cao Guangmin, Li Yingnian, Zhang Jinxia. Effect of Soil Circumstances Biogeochemical Factors on Carbon Dioxide Emission from Mollic-Gryic Cambisols[J]. Acta Agrestia Sinica, 2001, 9(4):307-312.[曹广民, 李英年, 张金霞, 等. 环境因子对暗沃寒冻雏形土土壤CO2释放速率的影响[J]. 草地学报, 2001, 9(4):307-312.] [36] Zhang Jinxia, Cao Guangmin, Zhou Dangwei, et al. Diel and seasonal changes of carbon dioxide emission from mollic-cryic cambisols on degraded grassland[J]. Acta Pedologica Sinica, 2001, 9(1):32-40.[张金霞, 曹广民, 周党卫, 等. 退化草地暗沃寒冻雏形土CO2释放的日变化和季节动态[J]. 土壤学报, 2001, 9(1):32-40.] [37] Zhou Dangwei, Cao Guangmin, Zhang Jinxia, et al. CO2 flux characteristics from degenerated mat cryo-sod soil during plant growing period[J]. The Journal of Applied Ecology, 2003, 14(3):367-371.[周党卫, 曹广民, 张金霞, 等. 植物生长季退化草毡寒冻雏形土CO2释放特征[J]. 应用生态学报, 2003, 14(03):367-371.] [38] Zhang Jinxia, Cao Guangmin, Zhou Ddangwei, et al. The carbon storage and carbon cycle among the atmosphere, soil, vegetationi and animal in the kobresia humilis alpine meadow ecosystem[J]. Acta Ecologica Sinica, 2003, 23(4):627-634.[张金霞, 曹广民, 周党卫, 等. 高寒矮嵩草草甸大气-土壤-植被-动物系统碳素储量及碳素循环[J]. 生态学报, 2003, 23(4):627-634.] [39] Zhao Qian, Liu Wenjie, Chen Shengyun, et al. Soil CO2 flux characteristics in alpine meadow of permafrost regions in the upper reaches of the Shule River, Qilianshan Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36(6):1572-1581.[赵倩, 刘文杰, 陈生云, 等. 祁连山疏勒河上游多年冻土区高寒草甸土壤CO2通量特征[J]. 冰川冻土, 2014, 36(6):1572-1581] [40] Wang Lin, Ouyang Hua, Zhou Caiping, et al. Soil organic matter dynamics along a vertical vegetation gradient in the Gongga mountain on the Tibetan Plateau[J]. Journal of Integrative Plant Biology, 2005, 47(4):411-420. [41] Zhang Xinfang, Zhao Lin, Xu Shijian, et al. Soil moisture effect on bacterial and fungal community in Beilu river (Tibetan Plateau) permafrost soils with different vegetation types[J]. Journal of Applied Microbiology, 2013, 114(4):1054-1065. [42] Li Yong, Xu Xiaoqin, Zhu Xianmo. Preliminary-study on mechanism of plant-roots to increase soil antiscouribility on the Loess Plateau[J]. Science in China Series B-Chemistry, 1992, 35(9):1085-1092. [43] Wang Huichun, Zhao Xiutang, Wang Qilan. Determination the soil micro-biomass of different vegetations in alpine grassland[J]. Qinghai Prataculture, 2006, 15(4):2-5.[王慧春, 赵修堂, 王启兰. 青海高寒草甸不同植被土壤微生物生物量的测定[J]. 青海草业, 2006, 15(4):2-5.] [44] Wang Qilan, Cao Guangmin, Wang Changting. Quantitative characters of soil microbes and microbial biomass under different vegetations in alpine meadow[J]. Chinese Journal of Ecology, 2007, 26(7):1002-1008.[王启兰, 曹广民, 王长庭. 高寒草甸不同植被土壤微生物数量及微生物生物量的特征[J]. 生态学杂志, 2007, 26(7):1002-1008.] [45] Zhang Fang, Wang Tao, Xue Xian, et al. The response of soil CO2 efflux to desertification on alpine meadow in the Qinghai-Tibet Plateau[J]. Environmental Earth Sciences, 2010, 60(2):349-358. [46] Wang Junfeng, Wang Genxu, Wang Yibo, et al. Influences of the degradation of swamp and alpine meadows on CO2 emission during growing season on the Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2007, 52(18):2565-2574. [47] Zhang Xianzhou, Shi Peili, Liu Yunfen, et al. Experimental study on soil CO2emission in the alpine grassland ecosystem on Tibetan Plateau[J]. Science in China Series D-Earth Sciences, 2005, 48:218-224. [48] Wang Junfeng, Wang Genxu, Wang Yibo. 青藏高原沼泽与高寒草甸草地退化对生长期CO2排放的影响[J]. Chinese Science Bulletin, 2007, 52(13):1554-1560.[王俊峰, 王根绪, 王一博, 等. 青藏高原沼泽与高寒草甸草地退化对生长期CO2排放的影响[J]. 科学通报, 2007, 52(13):1554-1560.] [49] Xu Wenfang, Yuan Wenping, Dong Wenjie, et al. A meta-analysis of the response of soil moisture to experimental warming[J]. Environmental Research Letters, 2013, 8(4):8. [50] Moorhead D L, Barrett J E, Virginia R A, et al. Organic matter and soil biota of upland wetlands in Taylor Valley, Antarctica[J]. Polar Biology, 2003, 26(9):567-576. [51] Tian Yuqiang, Gao Qiong, Zhang Zhicai, et al. The advances in study on plant photosynthesis and soil respiration of alpine grasslands on the Tibetan Plateau[J]. Ecology and Environmental Sciences, 2009, 18(2):711-721.[田玉强, 高琼, 张智才, 等. 青藏高原高寒草地植物光合与土壤呼吸研究进展[J]. 生态环境学报, 2009, 18(2):711-721.] [52] Zhang Bin, Chen Shengyun, He Xingyuan, et al. Responses of soil microbial communities to experimental warming in alpine grasslands on the Qinghai-Tibet Plateau[J]. Plos One, 2014, 9(8):10. [53] Xiong Jinbo, Sun Huaibo, Peng Fei, et al. Characterizing changes in soil bacterial community structure in response to short-term warming[J]. Fems Microbiology Ecology, 2014, 89(2):281-292. [54] Yang Yunfeng, Gao Ying, Wang Shiping, et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland[J]. Isme Journal, 2014, 8(2):430-440. [55] Xiong Jinbo, Peng Fei, Sun Huaibo, et al. Divergent responses of soil fungi functional groups to short-term warming[J]. Microbial Ecology, 2014, 68(4):708-715. [56] Guo Yongwang, Shi Dazhao,Wang Deng. Rodent problem in Qinghai-Tibet Plateau and its control measure[J]. Chinese Journal of Vector Biology and Control, 2009, 20(3):268-270.[郭永旺, 施大钊, 王登. 青藏高原的鼠害问题及其控制对策[J]. 中国媒介生物学及控制杂志, 2009, 20(3):268-270.] [57] Ci Haixin, Zhang Zhongxue, Lei Xiaoshui. The harm and prevention strategy of Ochotonacurzoniae in Qinghai-Tibetan Plateau[J]. Chinese Journal of Vector Biology and Control, 2007, 18(2):167-169.[慈海鑫, 张中学, 雷晓水. 青藏高原特有害鼠黑唇鼠兔的危害及防治对策[J]. 中国媒介生物学及控制杂志, 2007, 18(2):167-169.] [58] Peng Fei, Quangang You, Xue Xian, et al. Effects of rodent-induced land degradation on ecosystem carbon fluxes in an alpine meadow in the Qinghai-Tibet Plateau, China[J]. Solid Earth, 2015, 6(1):303-310. [59] Liu Yanshu, Fan Jiangwen, Harris W, et al. Effects of Plateau pika (ochotona curzoniae) on net ecosystem carbon exchange of grassland in the Three Rivers Headwaters Region, Qinghai-Tibet, China[J]. Plant and Soil, 2013, 366(1/2):491-504. [60] Zhou Yan, Li Nana, Grace J, et al. Impact of groundwater table and Plateau zokors (myospalax baileyi) on ecosystem respiration in the Zoige peatlands of China[J]. Plos One, 2014, 9(12):13. [61] Zhu Lingling, Johnson D A, Wang Weiguang, et al. Grazing effects on carbon fluxes in a northern China grassland[J]. Journal of Arid Environments, 2015, 114:41-48. [62] Yuan Hang, Hou Fujiang. Grazing intensity and soil depth effects on soil properties in alpine meadow pastures of Qilian mountain in northwest China[J]. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 2015, 65(3):222-232. [63] Chen Jin, Shi Weiyu, Cao Junjin. Effects of grazing on ecosystem CO2 exchange in a meadow grassland on the Tibetan Plateau during the growing season[J]. Environmental Management, 2015, 55(2):347-359. [64] Zhao Xinquan, Zhou Xingmin. Ecological basis of alpine meadow ecosystem management in Tibet:Haibei alpine meadow ecosystem research station[J]. Ambio, 1999, 28(8):642-647. [65] Babel W, Biermann T, Coners H, et al. Pasture degradation modifies the water and carbon cycles of the Tibetan highlands[J]. Biogeosciences, 2014, 11(23):6633-6656. [66] Wang Junfeng, Wang Genxu, Hu Hongchang, et al. The influence of degradation of the swamp and alpine meadows on CH4and CO2fluxes on the Qinghai-Tibetan Plateau[J]. Environmental Earth Sciences, 2010, 60(3):537-548. [67] You Quangang, Xue Xian, Peng Fei, et al. Comparison of ecosystem characteristics between degraded and intact alpine meadow in the Qinghai-Tibetan Plateau, China[J]. Ecological Engineering, 2014, 71:133-143. [68] Wang Zhiwei, Zhao Lin, Feng Qisheng, et al. Estimation of consistency about permafrost distribution and steppe classification in the Qinghai-Tibetan Plateau[J]. Pratacultural Science, 2012, 29(6):851-856.[王志伟, 赵林, 冯琦胜, 等. 青藏高原冻土区划与草原分类一致性分析[J]. 草业科学, 2012, 29(6):851-856.] [69] Wang Chenghai, Jin Shuanglong, Shi Hongxia. Area change of the frozen ground in China in the next 50 years[J]. Journal of Glaciology and Geocryology, 2014, 36(1):1-8.[王澄海, 靳双龙, 施红霞. 未来50 a中国地区冻土面积分布变化[J]. 冰川冻土, 2014, 36(1):1-8.] [70] Jin Huijun, Chang Xiaoli, Wang Shaolin. Evolution of permafrost on the Qinghai-Xizang (Tibet) Plateau since the end of the late pleistocene[J]. Journal of Geophysical Research-Earth Surface, 2007, 112(F2) [71] Li Ren, Zhao Lin, Ding Yongjian, et al. Temporal and spatial variations of the active layer along the Qinghai-Tibet highway in a permafrost region[J]. Chinese Science Bulletin, 2012, 57(35):4609-4616.[李韧, 赵林, 丁永建, 等. 青藏公路沿线多年冻土区活动层动态变化及区域差异特征[J]. 科学通报, 2012, 57(30):2864-2871.] [72] Lin Lin, Jin Huijun, Luo Dongliang, et al. Preliminary study on major features of alpine vegetation in the Source Area of the Yellow River (SAYR)[J]. Journal of Glaciology and Geocryology, 2014, 36(1):230-236.[林琳, 金会军, 罗栋梁, 等. 黄河源区高寒植被主要特征初探[J]. 冰川冻土, 2014, 36(1):230-236.] [73] Yuan Jiuyi, Yan Shuiyu, Zhao Xiufeng. The Relation Between Permafrost Degradation and Kobresia Meadow Change on the Southern Piedmont of the Tangula Range[J]. Journal of Glaciology and Geocryology, 1997, 19(1):49-53.[袁九毅, 闫水玉, 赵秀锋, 等. 唐古拉山南麓多年冻土退化与嵩草草甸变化的关系[J]. 冰川冻土, 1997, 19(1):49-53.] [74] Wang Yonghui, Liu Huiying, Chung Haegeun, et al. Non-growing-season soil respiration is controlled by freezing and thawing processes in the summer monsoon-dominated Tibetan alpine grassland[J]. Global Biogeochemical Cycles, 2014, 28(10):1081-1095. [75] Waldrop M P, Wickland K P, White R, et al. Molecular investigations into a globally important carbon pool:Permafrost-protected carbon in alaskan soils[J]. Global Change Biology, 2010, 16(9):2543-2554. [76] Wu Fuzhong, Peng Changhui, Zhu Jianxiao, et al. Impacts of freezing and thawing dynamics on foliar litter carbon release in alpine/subalpine forests along an altitudinal gradient in the eastern Tibetan Plateau[J]. Biogeosciences, 2014, 11(23):6871-6871. [77] Wang Shaoling. Frozen Ground and Environment in the Zoige Plateau and Its Surrounding Mountains[J]. Journal of Glaciology and Geocryology, 1997, 19(1):41-48.[王绍令. 若尔盖高原及其周围山地的冻土和环境[J]. 冰川冻土, 1997, 19(1):41-48.] [78] Kang Xxiaoming, Wang Yanfen, Chen Huai, et al. Modeling carbon fluxes using multi-temporal modis imagery and co2 eddy flux tower data in Zoige alpine wetland, south-west China[J]. Wetlands, 2014, 34(3):603-618. [79] Wang Junfeng, Wu Qingbai. Annual soil CO2efflux in a wet meadow during active layer freeze-thaw changes on the Qinghai-Tibet Plateau[J]. Environmental Earth Sciences, 2013, 69(3):855-862. [80] Zhang Fawei, Liu Anhua, Li Yingnian, et al. CO2 flux in alpine wetland ecosystem on the Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2008, 28(2):453-462.[张法伟, 刘安花, 李英年, 等. 青藏高原高寒湿地生态系统CO2通量[J]. 生态学报, 2008, 28(2):453-462.] [81] Wang Dexuan. Emission fluxes of carbon dioxide, methane and nitrous oxide from peat marsh in Zoige Plateau[J]. Wetland Science, 2010, 8(3):220-224.[王德宣. 若尔盖高原泥炭沼泽二氧化碳、甲烷和氧化亚氮排放通量研究[J]. 湿地科学, 2010, 8(3):220-224.] [82] Lu Xuyang, Fan Jihui, Yan Yan, et al. Responses of soil CO2 fluxes to short-term experimental warming in alpine steppe ecosystem, northern Tibet[J]. Plos One, 2013, 8(3):8. [83] Wei Da, Xu Ri, Wang Yinghong, et al. CH4, N2O and CO2 fluxes and correlation with environmental factors of alpine steppe grassland in Nam Co region of Tibetan Plateau[J]. Acta Agrestia Sinica, 2011, 19(3):412-419.[魏达, 旭日, 王迎红, 等. 青藏高原纳木错高寒草原温室气体通量及与环境因子关系研究[J]. 草地学报, 2011, 19(3):412-419.] [84] Yang Jianping, Ding Yongjian, Chen Rensheng. Spatial and temporal of variations of alpine vegetation cover in the source regions of the Yangtze and Yellow rivers of the Tibetan Plateau from 1982 to 2001[J]. Environmental Geology, 2006, 50(3):313-322. [85] Baumann F, He J S, Schmidt K, et al. Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau[J]. Global Change Biology, 2009, 15(12):3001-3017. [86] Yi Shuhua, Wang Xiaoyun, Qin Yu, et al. Responses of alpine grassland on Qinghai-Tibetan Plateau to climate warming and permafrost degradation:A modeling perspective[J]. Environmental Research Letters, 2014, 9(7):12. [87] Chen Shengyun, Liu Wenjie, Qin Xiang, et al. Response characteristics of vegetation and soil environment to permafrost degradation in the upstream regions of the Shule river basin[J]. Environmental Research Letters, 2012, 7(4). [88] Luo Donglinag, Jin Huijun, Lin Lin, et al. Degradation of permafrost and cold-environments on the interior and eastern Qinghai Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(3):538-546.[罗栋梁, 金会军, 林琳, 等. 青海高原中、东部多年冻土及寒区环境退化[J]. 冰川冻土, 2012, 34(3):538-546.] [89] Wang Zengru, Yang Guojing, He Xiaobo, et al. Relationship between plant community and environmental factors in the source regions of Yangtze river[J]. Journal of Glaciology and Geocryology, 2011, 33(3):640-645.[王增如, 杨国靖, 何晓波, 等. 长江源区植物群落特征与环境因子的关系[J]. 冰川冻土, 2011, 33(3):640-645.] [90] Niu Fujun, Luo Jing, Lin Zhanju, et al. Morphological characteristics of thermokarst lakes along the Qinghai-Tibet engineering corridor[J]. Arctic Antarctic and Alpine Research, 2014, 46(4):963-974. [91] Niu Fujun, Lin Zhanju, Liu Hua, et al. Characteristics of thermokarst lakes and their influence on permafrost in Qinghai-Tibet Plateau[J]. Geomorphology, 2011, 132(3/4):222-233. [92] Zimov S A, Voropaev Y V, Semiletov I P, et al. North siberian lakes:A methane source fueled by Pleistocene carbon[J]. Science, 1997, 277(5327):800-802. [93] Wu Qingbai, Zhang Peng, Jiang Guanlin, et al. Bubble emissions from thermokarst lakes in the Qinghai-Xizang Plateau[J]. Quaternary International, 2014, 321:65-70. [94] Wang Jiaoyue, Song Changchun, Wang Xianwei, et al. Progress in the study of effect of freeze-thaw processes on the organic carbon pool and microorganisms in soils[J]. Journal of Glaciology and Geocryology, 2011, 33(2):442-452.[王娇月, 宋长春, 王宪伟, 等. 冻融作用对土壤有机碳库及微生物的影响研究进展[J]. 冰川冻土, 2011, 33(2):442-452.] [95] Wang Genxu, Li Yuanshou, Wu Qingbai, et al. 青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响[J]. Science in China. D, 2006, 36(8):743-754.[王根绪, 李元首, 吴青柏, 等. 青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响[J]. 中国科学.D辑:地球科学, 2006, 36(8):743-754.] [96] Liu Huiyan. Seasonal changes of bacteria in BeiLuhe Aera permafrost from Tibet Plateau[D]. Lanzhou:Lanzhou University, 2011.[刘慧艳. 青藏高原北麓河冻土区微生物季节变化及其与环境关系的研究[D].; 兰州:兰州大学, 2011.] [97] Zhang Senqi, Wang Yonggui, Zhao Yongzhen, et al. Permafrost degradation and its environmental sequent in the Source Regions of the Yellow River[J]. Journal of Glaciology and Geocryology, 2004, 26(1):1-6.[张森琦, 王永贵, 赵永真, 等. 黄河源区多年冻土退化及其环境反映[J]. 冰川冻土, 2004, 26(1):1-6.] [98] Cao Wenbing, Wan Li, Zeng Yijian, et al. Impacts of global warming on the eco-environment in the headwater region of the Yellow River[J]. Earth science frontiers, 2006, 13(1):40-47.[曹文炳, 万力, 曾亦键, 等. 气候变暖对黄河源区生态环境的影响[J]. 地学前缘, 2006, 13(1):40-47.] [99] Liang Sihai, Wan Li, Li Zhiming, et al. The effect of permafrost on alpine vegetation in the Source Regions of the Yellow River[J]. Journal of Glaciology and Geocryology, 2007, 29(1):45-52.[梁四海, 万力, 李志明, 等. 黄河源区冻土对植被的影响[J]. 冰川冻土, 2007, 29(1):45-52.] [100] Oechel W C, Vourlitis G L, Hastings S J, et al. The effects of water table manipulation and elevated temperature on the net CO2 flux of wet sedge tundra ecosystems[J]. Global Change Biology, 1998, 4(1):77-90. [101] Ding Weixin, Cai Zucong. Methane emission from natural wetlands in China:Summary of years 1995-2004 studies[J]. Pedosphere, 2007, 17(4):475-486. [102] Kato T, Hirota M, Tang Y H, et al. Spatial variability of CH4and N2O fluxes in alpine ecosystems on the Qinghai-Tibetan Plateau[J]. Atmospheric Environment, 2011, 45(31):5632-5639. [103] Wei Da, Xu Ri, Tenzin Tarchen, et al. Considerable methane uptake by alpine grasslands despite the cold climate:In situ measurements on the central Tibetan Plateau, 2008-2013[J]. Global Change Biology, 2015, 21(2):777-788. [104] Schmitt M, Bahn M, Wohlfahrt G, et al. Land use affects the net ecosystem CO2exchange and its components in mountain grasslands[J]. Biogeosciences, 2010, 7(8):2297-2309. [105] Zhao Liang, Li Jie, Xu Shixiao, et al. Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau[J]. Biogeosciences, 2010, 7(4):1207-1221. [106] Kato T, Tang Yanhong, Gu Song, et al. Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau[J]. Global Change Biology, 2006, 12(7):1285-1298. [107] Xu Zhenfeng, Wan Chuan, Xiong Pei, et al. Initial responses of soil CO2 efflux and C, N pools to experimental warming in two contrasting forest ecosystems, eastern Tibetan Plateau, China[J]. Plant and Soil, 2010, 336(1-2):183-195. [108] Wei Da, Xu Ri, Wang Yinghong, et al. Responses of CO2, CH4 and N2O fluxes to livestock exclosure in an alpine steppe on the Tibetan Plateau, China[J]. Plant and Soil, 2012, 359(1/2):45-55. [109] Han Guangxuan, Xing Qinghui, Yu Junbao, et al. Agricultural reclamation effects on ecosystem CO2 exchange of a coastal wetland in the Yellow River Delta[J]. Agriculture Ecosystems & Environment, 2014, 196:187-198. [110] Shi Peili, Zhang Xianzhou, Zhong Zhiming, et al. Diurnal and seasonal variability of soil CO2 efflux in a cropland ecosystem on the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2006, 137(3/4):220-233. [111] Zong Ning, Song Minghua, Shi Peili, et al. Timing patterns of nitrogen application alter plant production and CO2 efflux in an alpine meadow on the Tibetan Plateau, China[J]. Pedobiologia, 2014, 57(4/6):263-269. [112] Chang Zongqiang, Liu Xiaoqing, Feng Qi, et al. Non-growing season soil CO2 efflux and its changes in an alpine meadow ecosystem of the Qilian mountains, northwest China[J]. Journal of Arid Land, 2013, 5(4):488-499. [113] Tao Zhen, Shen Chengde, Gao Quanzhou, et al. Soil organic carbon storage and soil CO2 flux in the alpine meadow ecosystem[J]. Science in China Series D-Earth Sciences, 2007, 50(7):1103-1114. [114] Zhao Liang, Li Yingnian, Xu Shixiao, et al. Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan Plateau[J]. Global Change Biology, 2006, 12(10):1940-1953. [115] Shi Peili, Sun Xiaomin, Xu Lingling, et al. Net ecosystem CO2 exchange and controlling factors in a steppe-kobresia meadow on the Tibetan Plateau[J]. Science in China "Series D:Earth Sciences", 2006, 49:207-218. [116] Chen Huai, Wu Ning, Yao Shouping, et al. Diurnal variation of methane emissions from an alpine wetland on the eastern edge of Qinghai-Tibetan Plateau[J]. Environmental Monitoring and Assessment, 2010, 164(1/4):21-28. [117] Jin Huijun, Wu Jie, Cheng Guodong, et al. Methane emissions from wetlands on the Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 1999, 44(24):2282-2286. [118] Chen Huai, Wu Ning, Gao Yongheng, et al. Spatial variations on methane emissions from Zoige alpine wetlands of southwest China[J]. Science of the Total Environment, 2009, 407(3):1097-1104. [119] Yue Guangyang, Zhao Lin, Zhao Yonghua, et al. Research advances of grassland ecosystem CO2 flux on Qinghai-Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2010, 32(1):166-174.[岳广阳, 赵林, 赵拥华,等. 青藏高原草地生态系统碳通量研究进展[J]. 冰川冻土, 2010, 32(1):166-174.] [120] Panikov N S, Dedysh S N. Cold season CH4 and CO2 emission from boreal peat bogs (west Siberia):Winter fluxes and thaw activation dynamics[J]. Global Biogeochemical Cycles, 2000, 14(4):1071-1080. [121] Wickland K P, Striegl R G, Mast M A, et al. Carbon gas exchange at a southern rocky mountain wetland, 1996-1998[J]. Global Biogeochemical Cycles, 2001, 15(2):321-335. [122] Song Changchun, Wang Yiyong, Wang Yuesi, et al. Dynamics of CH4, CO2 and N2O emission fluxes from mires during freezing and thawing season[J]. Huan Jing Ke Xue, 2005, 26(4):7-12.[宋长春, 王毅勇, 王跃思, 等. 季节性冻融期沼泽湿地CH4、CO2和N2O排放动态[J]. 环境科学, 2005, 26(4):7-12.] [123] Xu Zongxue, Gong Tongliang, Li Jingyu. Decadal trend of climate in the Tibetan Plateau-regional temperature and precipitation[J]. Hydrological Processes, 2008, 22(16):3056-3065. [124] Lu Heli, Liu Guifang. Trends in temperature and precipitation on the Tibetan Plateau, 1961-2005[J]. Climate Research, 2010, 43(3):179-190. [125] Li Hongqin, Zhang Fawei, Li Yingnian, et al. Seasonal and interannual variations of ecosystem photosynthetic features in an alpine dwarf shrubland on the Qinghai-Tibetan Plateau, China[J]. Photosynthetica, 2014, 52(3):321-331. [126] Liptzin D, Williams M W, Helmig D, et al. Process-level controls on CO2 fluxes from a seasonally snow-covered subalpine meadow soil, Niwot Ridge, Colorado[J]. Biogeochemistry, 2009, 95(1):151-166. |
[1] | 徐田利, 邬光剑, 张学磊, 燕妮, 杨松. 基于MODIS数据的青藏高原冰川反照率时空分布及变化研究[J]. 冰川冻土, 2018, 40(5): 875-883. |
[2] | 李玲萍, 刘维成, 杨梅, 李岩瑛. 1971-2015年青藏高原东北边坡降水特征及主要影响因子分析[J]. 冰川冻土, 2018, 40(5): 916-924. |
[3] | 常思静, 杨蕊琪, 章高森, 刘光琇, 陈拓. 青藏高原土壤中一株原油降解菌的作用机制探究[J]. 冰川冻土, 2018, 40(5): 1037-1046. |
[4] | 陈志恒, 张杰, 徐玮平. 青藏高原初春积雪的多尺度变化与北大西洋海温的关系[J]. 冰川冻土, 2018, 40(4): 655-665. |
[5] | 王陆阳, 吴青柏, 蒋观利. 风沙堆积对下伏多年冻土影响的数值模拟[J]. 冰川冻土, 2018, 40(4): 738-747. |
[6] | 刘鑫, 王一博, 吕明侠, 孙岩, 杨文静, 赵金鹏. 基于主成分分析的青藏高原多年冻土区高寒草地土壤质量评价[J]. 冰川冻土, 2018, 40(3): 469-479. |
[7] | 吴小波, 南卓铜, 王维真, 赵林. 基于Noah陆面过程模型模拟青藏高原植被和土壤特征对多年冻土的影响[J]. 冰川冻土, 2018, 40(2): 279-287. |
[8] | 宋炫颖, 刘勇勤. 高寒地区湖泊浮游病毒时空分布特征[J]. 冰川冻土, 2018, 40(2): 395-403. |
[9] | 蒋观利, 吴青柏, 张中琼. 青藏高原不同高寒生态系统类型下多年冻土活动层水热过程差异研究[J]. 冰川冻土, 2018, 40(1): 7-17. |
[10] | 杜玉娥, 刘宝康, 贺卫国, 段水强, 侯扶江, 王宗礼. 1976-2017年青藏高原可可西里盐湖面积动态变化及成因分析[J]. 冰川冻土, 2018, 40(1): 47-54. |
[11] | 张宝贵, 刘晓娇, 刘敏, 张威, 章高森, 伍修琨, 陈拓, 刘光琇. 青藏高原疏勒河上游不同类型冻土可培养细菌多样性特征研究[J]. 冰川冻土, 2018, 40(1): 156-165. |
[12] | 刘亚军, 张玉兰, 康世昌, 李小飞, 陈鹏飞, 郭军明. 青藏高原东南部冰川雪冰重金属元素特征[J]. 冰川冻土, 2017, 39(6): 1200-1211. |
[13] | 朱美壮, 王根绪, 肖瑶, 胡兆永, 宋春林, 黄克威. 青藏高原多年冻土区高寒草甸土壤水分入渗变化研究[J]. 冰川冻土, 2017, 39(6): 1316-1325. |
[14] | 张志刚, 王建, 何元庆, 何则, 齐翠姗, 李盼盼. MIS 3时期青藏高原东南部稻城古冰帽冰进事件研究[J]. 冰川冻土, 2017, 39(5): 957-966. |
[15] | 张艳阁, 徐建中, 余光明. 祁连山老虎沟地区夏季大气颗粒物中水溶性离子的变化特征[J]. 冰川冻土, 2017, 39(5): 1022-1028. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000