[1] Liu Minghao, Sun Zhizhong, NiuFuju, et al.Variation characteristics of the permafrost along the Qinghai-Tibet Railway under the background of climate change[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1122-1130.[刘明浩, 孙志忠, 牛富俊, 等. 气候变化背景下青藏铁路沿线多年冻土变化特征研究[J]. 冰川冻土, 2014, 36(5): 1122-1130.] [2] Wang Chenghai, Jin Shuanglong, Shi Hongxia. Area change of the frozen ground in China in the next 50 years[J]. Journal of Glaciology and Geocryology, 2014, 36(1): 1-8.[王澄海, 靳双龙, 施红霞. 未来50 a中国地区冻土面积分布变化[J]. 冰川冻土, 2014, 36(1): 1-8.] [3] Li Shuangyang, Lai Yuanming, Zhang Mingyi, et al. Study on distribution laws of elastic modulus and strength of warm frozen soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 4299-4305.[李双洋, 赖远明, 张明义, 等. 高温冻土弹性模量及强度分布规律研究[J]. 岩石力学与工程学报, 2007, 26(S2): 4299-4305.] [4] Lai Yuanming, Li Shuangyang, GaoZhihua, et al. Stochastic damage constitutive model for warm frozen soil under uniaxial compression and its strength distribution[J]. Journal of Glaciology and Geocryology, 2007, 29(6): 969-976.[赖远明, 李双洋, 高志华, 等. 高温冻结黏土单轴随机损伤本构模型及强度分布规律[J]. 冰川冻土, 2007, 29(6): 969-976.] [5] Du Haimin, Zhang Shujuan, Ma Wei. Study of the uniaxial compressive strength characteristics of frozen soil with high ice/water content[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1213-1219.[杜海民, 张淑娟, 马巍. 高含冰(水)量冻土的单轴抗压强度变化特性研究[J]. 冰川冻土, 2014, 36(5): 1213-1219.] [6] Hu Kai, Lai Yuanming. Experimental study on the strength parameters and strength criteria of saline frozen siltysand[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1199-1204.[胡凯, 赖远明. 含盐冻结粉质砂土的强度参数和强度准则试验研究[J]. 冰川冻土, 2014, 36(5): 1199-1204.] [7] Wang Chengwei, Li Dongwei. Study and verification of laboratory prepared frozen soil viscoelastic-plastic damage coupling constitutive model[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1219-1223.[汪承维, 李栋伟. 深部人工冻土黏弹塑损伤耦合本构模型研究及其验证[J]. 冰川冻土, 2013, 35(5): 1219-1223.] [8] Lai Yuanming, Jin Long, Chang Xiaoxiao. Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil[J]. International Journal of Plasticity, 2009, 26(6): 1177-1205. [9] Lai Yuanming, Yang Yugui, Chang Xiaoxiao, et al. Strength criterion and elastoplasticconstitutive model of frozen silt in generalized plastic mechanics[J]. International Journal of Plasticity, 2010, 26(10): 1461-1484. [10] Wu Ziwang, Ma Wei. Strength and creep of frozen soil[M]. Lanzhou: Lanzhou University Press, 1994.[吴紫汪, 马巍. 冻土强度与蠕变[M]. 兰州: 兰州大学出版社, 1994.] [11] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. [12] Salot C, Gotteland P, Villard P. Influence of relative density on granular materials behavior: DEM simulations of triaxial tests[J]. Granular matter, 2009, 11(4): 221-236. [13] Kozicki J, Tejchman J, M hlhaus H B. Discrete simulations of a triaxial compression test for sand by DEM[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(18): 1923-1952. [14] de Bono J P, McDowell G R, Wanatowski D. DEM of triaxial tests on crushable cemented sand[J]. Granular Matter, 2014, 16(4): 563-572. [15] Luo Yong, Gong Xiaonan, Lian Feng. Simulation of mechanical behaviors of granular materials by three-dimensional discrete element method based on particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 292-297.[罗勇, 龚晓南, 连峰. 三维离散颗粒单元模拟无黏性土的工程力学性质[J]. 岩土工程学报, 2008, 30(2): 292-297.] [16] Jiang Mingjing, Hu Haijun. Numerical simulation of triaxial shear test of dense and loose granulates under constant suction by discrete element method[J]. Journal of Central South University (Science and Technology), 2010, 41(6): 2350-2359.[蒋明镜, 胡海军. 密实和松散颗粒材料等吸力三轴剪切试验离散元数值模拟[J]. 中南大学学报(自然科学版), 2010, 41(6): 2350-2359.] [17] Zhou Fengxi, Lai Yuanming. Simulation of mechanical behavior for frozen sand clay by discrete element method[J]. Rock and Soil Mechanics, 2010, 31(12): 4016-4020.[周凤玺, 赖远明. 冻结砂土力学性质的离散元模拟岩土力学[J]. 岩土力学, 2010, 31(12): 4016-4020.] [18] Gao Zhihua. Study on mechanical properties of warm and ice-rich frozen soil to static/dynamic loads[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2007.[高志华. 高温-高含冰量冻结黏土静动力学试验研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2007.] [19] Wu Ziwang, Liu Yongzhi. Frozen subsoil and engineering[M]. Beijing: China Ocean Press, 2005.[吴紫汪, 刘永智. 冻土地基与工程建筑[M]. 北京: 海洋出版社, 2005.] [20] Zhou Jian , Chi Yuwei, Chi Yong, et al. Simulation of biaxial test on sand by particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 701-704.[周健, 池毓蔚, 池永, 等. 砂土双轴试验的颗粒流模拟[J]. 岩土工程学报, 2000, 22 (6): 701-704.] [21] Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. |