[1] Anesio A M, Johanna L P. Glaciers and ice sheets as a biome[J]. Trends in Ecology & Evolution, 2012, 27(4):219-225. [2] Laurent P, Dagmar T, David B, et al. Distribution of high bacterial taxa across the chronosequence of two alpine glacier forelands[J]. Microbial Ecology, 2011, 61(2):303-312. [3] Gu Yanling, Shi Xuewei, Zhu Jianbo, et al. Vertical distribution pattern of the archaeaea community within the permafrost active layer in front of the glacier No.1 at headwaters of Vrümqi River, Tianshan Mountains[J]. Journal of Glaciology and Geoaryology, 2013, 35(3):761-769.[顾燕玲, 史学伟, 祝建波, 等. 天山乌鲁木齐河源1号冰川前沿冻土活动层古菌群落的垂直分布格局[J]. 冰川冻土, 2013, 35(3):761-769.] [4] López-Bueno A, Tamames J, Velázquez D, et al. High diversity of the viral community from an Antarctic lake[J]. Science, 2009, 326(5954):858-861. [5] Amato P, Hennebelle R, Magand O, et al. Bacterial characterization of the snow cover at Spitzberg, Svalbard[J]. FEMS Microbiology Ecology, 2007, 59(2):255-264. [6] Sattler B, Puxbaum H, Psenner R. Bacterial growth in supercooled cloud droplets[J]. Geophysical Research Letters, 2001, 28(2):239-242. [7] Segawa T, Miyamoto K, Ushida K, et al. Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR[J]. Applied and Environmental Microbiology, 2005, 71(1):123-130. [8] Ma L, Rogers S O, Catranis C M, et al. Detection and characterization of ancient fungi entrapped in glacial ice[J]. Mycologia, 2000, 92(2):286-295. [9] Ma Xiaojun, Liu Wei, Hou Shugui, et al. Culturable bacteria in snow pits of different type glaciers:diversity and relationship with environment[J]. Journal of Glaciology and Geoaryology, 2009, 31(3):483-489.[马晓军, 刘炜, 侯书贵, 等. 不同类型冰川雪中可培养细菌多样性变化及其与环境因子关系研究[J]. 冰川冻土, 2009, 31(3):483-489.] [10] Xie Jun, Wang Ninglian, Pu Jianchen, et al. Study of the bacterial diversity recovered from glacial snow of the northern Tibetan Plateau[J]. Journal of Glaciology and Geoaryology, 2009, 31(2):342-349.[谢君, 王宁练, 蒲健辰, 等. 青藏高原北部冰川雪中细菌多样性的研究[J]. 冰川冻土, 2009, 31(2):342-349.] [11] Liu Yongqin, Yao Tandong, Kang Shichang, et al. Seasonal variation of snow microbial community structure in the East Rongbuk glacier, Mt. Everest[J]. Chinese Science Bulletin, 2006, 51(11):1287-1296.[刘勇勤, 姚檀栋, 康世昌, 等. 珠穆朗玛峰地区东绒布冰川冰雪微生物群落及其季节变化[J]. 科学通报, 2006, 51(11):1287-1296.] [12] Liu Xiaobo, Kang Shichang, Yao Tandong, et al. The seasonal change of bacterial abundance and diversity in snow of the Guoqu glacier, Mt. Geladandong[J]. Journal of Glaciology and Geoaryology, 2009, 31(4):634-641.[刘晓波, 康世昌, 姚檀栋, 等. 各拉丹冬峰果曲冰川雪中细菌的季节变化特征[J]. 冰川冻土, 2009, 31(4):634-641.] [13] Zhang Gaosen, Zhang Wei, Liu Guangxui, et al. Distribution of aerobic heterotrophic bacteria managed by environmental factors in foreland[J]. Journal of Glaciology and Geoaryology, 2012, 34(4):965-971.[章高森, 张威, 刘光王秀, 等. 环境因素主导着冰川前沿裸露地好氧异养细菌群落的分布[J]. 冰川冻土, 2012, 34(4):965-971.] [14] Zhang Shuhong, Hou Shugui, Qin Xiang, et al. Preliminary research on the dominant bacterial population affected by retreat of the Laohugou glacier No.12 in the Qilian Mountain[J]. Journal of Glaciology and Geoaryology, 2013, 35(3):751-760.[张淑红, 侯书贵, 秦翔, 等. 祁连山老虎沟12号冰川退缩对细菌优势种群影响的初步研究[J]. 冰川冻土, 2013, 35(3):751-760.] [15] Wu Xiukun, Mao Wenliang, Tai Xisheng, et al. Progress in studies of microbiology ecology in glacier foreland[J]. Journal of Glaciology and Geoaryology, 2013, 35(1):217-223.[伍修锟, 毛文梁, 台喜生, 等. 冰川前沿裸露地微生物生态学研究进展[J]. 冰川冻土, 2013, 35(1):217-223.] [16] Pu Jianchen, Yao Tandong, Duan Keqin, et al. An observation on surface ablation on the Yangbark glacier in the Muztag Ata, China[J]. Journal of Glaciology and Geoaryology, 2003, 25(6):680-684.[蒲健辰, 姚檀栋, 段克勤. 慕士塔格峰洋布拉克冰川消融的观测分析[J]. 冰川冻土, 2003, 25(6):680-684.] [17] Xiang Shurong, Yao Tandong, Wu Guangjian, et al. Vertical quantitative and dominant population distribution of the bacteria isolated from the Muztagata ice core[J]. Science in China (Series D:Earth Sciences), 2005, 35(3):252-262.[向述荣, 姚檀栋, 邬光剑, 等. 慕士塔格冰芯可培养细菌的数量分布和主要菌群结构随深度的变化[J]. 中国科学(D辑:地球科学), 2005, 35(3):252-262.] [18] Shang Tiancui, Xu Bingliang, Xiang Shurong, et al. Physiological characteristics of isolates from the Muztag Ataice core and sequence analysis of Staphylococcus equorum Muzt-D84 cspA gene[J]. Journal of Gansu Agricultural University, 2007, 42(4):65-70.[尚天翠, 徐秉良, 向述荣, 等. 慕士塔格冰芯细菌的生理特征以及葡萄球菌Muzt-D84 cspA基因序列分析[J]. 甘肃农业大学学报, 2007, 42(4):65-70.] [19] Li Yaling, Han Guomin, He Sha'e, et al. A new strategy for construction of Phylogenetic tree based on DNA molecular mark data[J]. China Journal of Bioinformatics, 2008, 6(4):168-170.[李亚玲, 韩国民, 何沙娥, 等. 基于DNA分子标记数据构建系统进化树的新策略[J]. 生物信息学, 2008, 6(4):168-170.] [20] Christner B C, Thompson E, Thompson L G, et al. Recovery and identification of viable bacteria immured in glacier ice[J]. Icarus, 2000, 144(2):479-485. [21] Yao T D, Xiang S R, Zhang X J, et al. Microorganisms in the Malan ice core and their relation to climatic and environmental changes[J]. Global Biogeochemical Cycles, 2006, 20(1):doi:10.1029/2004GB002424. [22] Wei Yunlin, Zhou Changtao, Ji Xiuling, et al. Phylogenetic analysis of several pseudomonas strains isolated from Mingyong glacier[J]. Journal of Yunnan university (Natural Science), 2007, 27(S1):408-412.[魏云林, 周长涛, 季秀玲, 等. 明永冰川地区假单胞菌的分离及系统发育分析[J]. 云南大学学报(自然科学版), 2007, 27(S1):408-412.] [23] Li Miao, Feng Haiyan, Yang Zhongfang, et al. Diversity of culturable bacteria in the typical frozen soil areas in China[J]. Acta Microbiologica Sinica, 2011, 51(12):1595-1604.[李淼, 冯海艳, 杨忠芳, 等. 中国典型冻土区土壤可培养细菌多样性[J]. 微生物学报, 2011, 51(12):1595-1604.] [24] Doyle S, Montross S N, Skidmore M, et al. Characterizing microbial diversity and the potential for metabolic function at -15℃ in the basal ice of Taylor Glacier, Antarctica[J]. Biology, 2013, 2(3):1034-1053. [25] Ganzert L, Bajerski F, Wagner D. Bacterial community composition and diversity of five different permafrost-affected soils of Northeast Greenland[J]. FEMS Microbiology Ecology, 2014, 89(2):426-441. [26] Lay C Y, Mykytczuk N C S, Niederberger T D, et al. Microbial diversity and activity in hypersaline high Arctic spring channels[J]. Extremophiles, 2012, 16(2):177-191. [27] Liu Y Q, Yao T D, Jiao N Z, et al. Culture bacteria in glacial meltwater at 6350 m on the East Rongbuk Glacier, Mount Everest[J]. Extremophiles, 2008, 13(1):89-99. [28] Steven B, Pollard W H, Greer C W, et al. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic[J]. Environmental Microbiology, 2008, 10(12):3388-3403. [29] Yue Jun, Liu Guangxiu, Zhang Gaose, et al. Changes in soil properties and culturable bacteria diversityin Zhadang glacier foreland[J]. Journal of Glaciology and Geoaryology, 2010, 32(6):1180-1185.[岳君, 刘光王秀, 章高森, 等. 念青唐古拉山扎当冰川退缩前沿土壤性质与可培养细菌多样性变化[J]. 冰川冻土, 2010, 32(6):1180-1185.] [30] Tao Ling, Gu Yanling, Zheng Xiaoji, et al. Cultivable bacteria isllated from the meltwater of the glacier No.1 at headwater of the Vrümqi River in Tianshan Mountains physiological-biochemical character and phylogeny[J]. Journal of Glaciology and Geoaryology, 2015, 37(2):511-521.[陶玲, 顾燕玲, 郑晓吉, 等. 天山乌鲁木齐河源1号冰川融水可培养细菌生理生化特性及其系统发育[J]. 冰川冻土, 2015, 37(2):511-521.] [31] Xiang S, Yao T D, An L Z, et al. Vertical quantitative and dominant population distribution of the bacteria isolated from the Muztagata ice core[J]. Science in China (Series D:Earth Science), 2005, 48(10):1728-1739. [32] Zhu F, Wang S, Zhou P. Flavobacterium xinjiangense sp. nov. and Flavobacterium omnivorum sp. nov., novel psychrophiles from the China No. 1 Glacier[J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(3):853-857. [33] Simu K, Hagstr m Å. Oligotrophic bacterioplankton with a novel single-cell life strategy[J]. Applied and Environmental Microbiology, 2004, 70(4):2445-2451. |