[1] Earth A. Environmental Limited & Nixon Ltd, 1999. Monograph on Norman Wells pipeline geochnical design and performance[J]. Geological Survey of Canada Open File, 3773:1-95. [2] Thompson S R, Tart R G. Driven pile capacities in warm permafrost in Komi Republic, Russia[C]//Cold Regions Engineering:The Cold Regions Infrastructure:An International Imperative for the 21st Century. ASCE, 1996:254-265. [3] Jin Huijun, Brewer M C. Experiences and lessons learned in the engineering design and construction in the Alaska Arctic[J]. Journal of Glaciology and Geocryology, 2005, 27(1):140-146.[金会军, Max C. Brewer. 阿拉斯加北极地区的工程设计和施工经验及教训[J]. 冰川冻土, 2005, 27(1):140-146.] [4] Qin Dahe, Yao Tandong, Ding Yongjian, et al. Glossary of cryosphere science[M]. Beijing:China Meteorological Press, 2014.[秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学辞典[M]. 北京:气象出版社, 2014.] [5] Yang Sizhong, Jin Huijun, Ji Yanjun, et al. Progress of the studies of migretion of oil spilled in frozen ground regions and its clean-up techniques[J]. Journal of Glaciology and Geocryology, 2008, 30(3):501-507.[杨思忠, 金会军, 吉延峻, 等. 冻土区石油污染物迁移及清除研究进展[J]. 冰川冻土, 2008, 30(3):501-507.] [6] Lachenbruch A H. Some estimates of the thermal effects of a heated pipeline in permafrost[R]. US Geological Survey, 1970, 632:1-23. [7] Jin Huijun, Yu Wenbing, Chen Youchang, et al. Frost heave and thaw settlement in the engineering design and construction of oil pipelines in permafrost regions:a review[J]. Journal of Glaciology and Geocryology, 2005, 27(3):454-464.[金会军, 喻文兵, 陈友昌, 等. 多年冻土区输油管道工程中的(差异性)融沉和冻胀问题[J]. 冰川冻土, 2005, 27(3):454-464.] [8] Leng Yifei. Experimental research on physical mechanical properties and numerical analysis on temperature field of permafrost of China-Russia oil pipeline[D]. Changchun:Jilin University, 2011.[冷毅飞. 中俄石油管道多年冻土物理力学性质试验研究及温度场数值分析[D]. 长春:吉林大学, 2011.] [9] Xiao Ye, Cui Dongzhi, Qi Benming, et al. Trunk pipeline calculation of strength and stability[M]. Beijing:Petroleum Industry Press, 1988.[肖冶, 崔东植, 戚本明, 等. 干线管道强度及稳定性计算[M]. 北京:石油工业出版社, 1988.] [10] Liguori A, Maple J A, Heuer C E. The design and construction of the Alyeska pipeline[C]//Proceedings of the Third International Conference on Permafrost, Alberta, Canada:National Research Council of Canada, 1978:151-157. [11] Hanna A J, Saunders R J, Lem G N, et al. Alaska Highway Gas Pipeline Project (Yukon) section thaw settlement design approach[C]//Proceedings of the Fourth International Conference on Permafrost, Washington:National Academy Press, 1983:439-444. [12] Jahns H O, Heuer C E. Frost heave mitigation and permafrost protection for a buried chilled-gas pipeline[C]//Proceedings of the Fourth International Conference on Permafrost, Washington:National Academy Press, 1983:531-536. [13] Deng Daoming, Wang Chunxi. Strength calculation of buried single span pipeline at two ends of non fixed pier[J]. Oil-Gas Field Surface Engineering, 1999, 18(1):53-56.[邓道明, 王春喜. 无固定墩两端埋地单跨管道的强度计算[J]. 油气田地面工程, 1999, 18(1):53-56.] [14] Nixon J F, MacInnes K L. Application of pipe temperature simulator for Norman Wells oil pipeline[J]. Canadian Geotechnical Journal, 1996, 33(1):140-149. [15] Gao Huiying, Feng Qimin. Response analysis for buried pipelines through settlement zone[J]. Earthquake Engineering and Engineering Vibration, 1997, 17(1):68-75.[高惠瑛, 冯启民. 场地沉陷埋地管道反应分析方法[J]. 地震工程与工程振动, 1997, 17(1):68-75.] [16] Hu Zongliu, Wu Ming, Chen Yang, et al. The present situation and trend of pipeline safety study of frost heave[J]. Oil & Gas Storage and Transportation, 2011, 30(12):881-882.[胡宗柳, 吴明, 陈杨, 等. 输油管道冻胀安全性研究现状与趋势[J]. 油气储运, 2011, 30(12):881-882.] [17] O'rourke M, Gadicherla V, Abdoun T. Centrifuge modeling of PGD response of buried pipe[J]. Earthquake Engineering and Engineering Vibration, 2005, 4(1):69-73. [18] Slusarchuk W A, Clark J I, Nixon J F, et al. Field test results of a chilled pipeline buried in unfrozen ground[C]//Proceedings of the Third International Permafrost Conference, Edmonton, Alberta, Canada:National Research Council of Canada, 1978:10-13. [19] Liu Xiaoben, Zhang Hong, Xia Mengying. Research on experimental method of upheaval buckling of pipeline in permafrost zone[J]. Petro-Chemical Equipment, 2014, 43(4):11-14.[刘啸奔, 张宏, 夏梦莹. 冻土区管道上浮屈曲临界载荷试验研究[J]. 石油化工设备, 2014, 43(4):11-14.] [20] Xie Xu, He Yuao. Study on the earthquake response pipeline laid through different of buried media[J]. Journal of Ningbo University, 1988, 1(2):117-129.[谢旭, 何玉敖. 埋设管线穿过不同介质时的地震反应研究[J]. 宁波大学学报, 1988, 1(2):117-129.] [21] Razaqpur A G, Wang D. Frost-induced deformations and stresses in pipelines[J]. International Journal of Pressure Vessels and Piping, 1996, 69(2):105-118. [22] Dhar A S, Kabir M A. A simplified soil-structure interaction based method for calculating deflection of buried pipe[J]. Soil Stress-Strain Behavior:Measurement, Modeling and Analysis, 2007:909-919. [23] Iimura S. Simplified mechanical model for evaluating stress in pipeline subject to settlement[J]. Construction and Building Materials, 2004, 18(6):469-479. [24] Hendriks M A N, Hart T C, Marcel P, et al. Elasto-plastic design and assessment of pipelines:3D finite element modeling[C]//Proceedings of the ASCE Pipeline Division Specialty Congress-Pipeline Engineering and Construction, San Diego, CA, United States, 2004:923-932. [25] Guo Endong, Feng Qimin. Aseismic analysis method for buried steel pipe crossing fault[J]. Earthquake Engineering and Engineering Vibration, 1999, 19(4):43-47.[郭恩栋, 冯启民. 跨断层埋地钢管道抗震计算方法研究[J]. 地震工程与工程振动, 1999, 19(4):43-47.] [26] Li Fangzheng. Research on superposition method of interaction between soil frost heave and beams on foundation[J]. Rock and Soil Mechanics, 2009, 30(1):79-85.[李方政. 土体冻胀与地基梁相互作用的叠加法研究[J]. 岩土力学, 2009, 30(1):79-85.] [27] Liang Jianwen, He Yuao. Dynamic instability of buried pipelines in axial direction[J]. Engineering Mechanics, 1994, 11(3):129-136.[梁建文, 何玉敖. 地下管线的轴向动态失稳分析[J]. 工程力学, 1994, 11(3):129-136.] [28] Liu Chunguang, Shi Yongxia. Numerical analysis of buried pipelines subjected to the settlanent[J]. Earthquake Engineering and Engineering Vibration, 2008, 28(4):178-183.[柳春光, 史永霞. 沉陷区域埋地管线数值模拟分析[J]. 地震工程与工程振动, 2008, 28(4):178-183.] [29] Yatabe H, Fukuda N, Masuda T, et al. Analytical study of appropriate design for high-grade induction bend pipes subjected to large ground deformation[J]. Journal of Offshore Mechanics and Arctic Engineering, 2004, 126(4):376-383. [30] Gan Wenshui, Hou Zhongliang. Analysis of pipeline responses toseismic wave propagation[J]. Earthquake Engineering and Engineering Vibration, 1988, 8(2):79-86.[甘文水, 侯忠良. 地震行波作用下埋设管线的反应计算[J]. 地震工程与工程振动, 1988, 8(2):79-86.] [31] Liu Chunguang, Feng Xiaobo. Using equivalent spring boundary to analyze the responses of buried pipeline subjected to ground settlement[J]. Earthquake Engineering and Engineering Vibration, 2009, 29(6):197-202.[柳春光, 冯晓波. 采用等效弹簧边界分析埋地管线在沉陷情况下的反应[J]. 地震工程与工程振动, 2009, 29(6):197-202.] [32] Guo Hongyu, Jia Yanmin. Numerical analysis of single pile axial static load considering interaction between pile and frozen soil[J]. Journal of China & Foreign Highway, 2007, 27(1):31-34.[郭红雨, 贾艳敏. 考虑桩与冻土相互作用的单桩轴向静载数值分析[J]. 中外公路, 2007, 27(1):31-34.] [33] Nixon J F, Hazen B. Uplift resistance of pipelines buried in frozen ground[C]//Chinese Society of Glaciology and Geocryology. Proceedings of the Sixth International Conference on Permafrost, Beijing, China:South China University of Technology Press, 1993:494-499. [34] Ariman T, Muleski G E. A review of the response of buried pipelines under seismic excitations[J]. Earthquake Engineering & Structural Dynamics, 1981, 9(2):133-152. [35] Shah K R, Ghani R A. A two-dimensional frost-heave model for buried pipelines[J]. International Journal for Numerical Methods in Engineering, 1993, 36(15):2545-2566. [36] Wang Haibo, Lin Gao. Seismic response of the pipelines buried in three dimensional semi-infinite elastic medium[J]. China Civil Engineering Journal, 1987, 20(3):80-91.[王海波, 林皋. 半无限弹性介质中管线地震反应分析[J]. 土木工程学报, 1987, 20(3):80-91.] [37] Li Nansheng, Li Hongsheng, Ding Dewen. The quasi-static temperature field and heat engineering parameters of buried petroleum pipelines in seasonally frozen ground regions[J]. Journal of Glaciology and Geocryology, 1997, 19(1):65-72.[李南生, 李洪升, 丁德文. 浅埋集输油管线拟稳态温度场及热工计算[J]. 冰川冻土, 1997, 19(1):65-72.] [38] Li Changjun, Jiang Maoze, Ji Guofu. Thermal calculation of buried oil pipeline in permafrost zone[J]. Journal of Southwest Petroleum Institute, 2000, 22(1):77-79.[李长俊, 江茂泽, 纪国富. 永冻区埋地热油管道热力计算[J]. 西南石油学院学报, 2000, 22(1):77-79.] [39] Li Changjun, Luo Jianwu, Chen Yubao. Numerical simulation of heated crude oil pipeline at starting[J]. Oil & Gas Storage and Transportation, 2002, 21(12):16-19.[李长俊, 骆建武, 陈玉宝. 埋地热油管道启输热力数值模拟[J]. 油气储运, 2002, 21(12):16-19.] [40] Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resources Research, 1973, 9(5):1314-1323. [41] Palmer A C, Williams P J. Frost heave and pipeline upheaval buckling[J]. Canadian geotechnical journal, 2003, 40(5):1033-1038. [42] Zarling J P, Goering D J. Performance of insulating systems for buried pipe[C]//Proc. Regions Environmental Engineering Conference, Fairbanks, AK, 1983:29-42. [43] Chang C L. Numerical simulation for natural convection of micropolar fluids flow along slender hollow circular cylinder with wall conduction effect[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(3):624-636. [44] Lunardini V J. Phase change around insulated buried pipes:quasi-steady method[J]. Journal of Energy Resources Technology, 1981, 103(3):201-207. [45] Liang Chengji, Li Hongsheng. Numerical analysis for coupled of moisture heat and stress fields during soil freezing around the buried chilled pipeline[J]. Journal of Shanghai Maritime University, 2000, 21(4):85-91.[梁承姬, 李洪升. 输冷管道附近土体冻结过程的水热力耦合数值模拟[J]. 上海海运学院学报, 2000, 21(4):85-91.] [46] Liu Jianjun, Xie Jun. Numerical simulation of thermo-hydro-mechanical coupling around underground pipelines in patchy permafrost region[J]. Rock and Soil Mechanics, 2013, 34(1):444-450.[刘建军, 谢军. 岛状多年冻土管道周围热-水-应力耦合数值模拟[J]. 岩土力学, 2013, 34(1):444-450.] [47] Cui Hui, Wu Changchun. Heat transfer and flow coupling calculation model of transient scenario for hot oil pipeline[J]. Journal of the University of Petroleum, China, 2005, 29(3):101-105.[崔慧, 吴长春. 热油管道非稳态工况传热与流动的耦合计算模型[J]. 石油大学学报, 2005, 29(3):101-105.] [48] Zheng Ping. Numerical simulation for couplings of water, temperature and stress fields of underground oil pipeline in cold region[D]. Beijing:China University of Petroleum, 2011.[郑平. 冻土区埋地管道周围土壤水热力耦合作用的数值模拟[D]. 北京:中国石油大学, 2011.] [49] Liu Naifei, Li Ning, He Min, et al. Analyzing the factors controlling the bearing capacity of cast-in-place piles based on a thermo-hydro-mechanical coupling model[J]. Journal of Glaciology and Geocryology, 2014, 36(6):1471-1478.[刘乃飞, 李宁, 何敏, 等. 基于水-热-力耦合模型的钻孔灌注桩承载力影响因素分析[J]. 冰川冻土, 2014, 36(6):1471-1478.] [50] Chen Youchang, Ji Cheng, Huang Jianzhong, et al. Strain monitoring and prediction system for the buried pipeline in permafrost area[J]. The Chinese Journal of Geological Hazard and Control, 2011, 22(4):122-125.[陈友昌, 籍程, 黄建忠, 等. 冻土区埋地油气管道应变监测及预报系统[J]. 中国地质灾害与防治学报, 2011, 22(4):122-125.] [51] Wu Z, Barosh P J, Wang L, et al. Numerical modeling of stress and strain associated with the bending of an oil pipeline by a migrating pingo in the permafrost region of the northern Tibetan Plateau[J]. Engineering Geology, 2008, 96(1):62-77. [52] Wu Yaping, Sheng Yu, Wang Yong, et al. Stresses and deformations in a buried oil pipeline subject to differential frost heave in permafrost regions[J]. Cold Regions Science and Technology, 2010, 64(3):256-261. [53] Di Yan, Shuai Jian, Kong Lingzhen. The frost heave of frozen soil and its effect on the pipeline[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(3):634-639.[狄彦, 帅健, 孔令圳. 冻土冻胀及其对管道的作用分析[J]. 地下空间与工程学报, 2016,12(3):634-639.] [54] Li Guoyu, Ma Wei, Zhou Zhiwei, et al. The limit state of pipeline based on strain design in cold regions[J]. Journal of Glaciology and Geocryology, 2016, 38(4):1099-1105.[李国玉, 马巍, 周志伟, 等. 寒区输油管道基于应变设计的极限状态研究[J]. 冰川冻土, 2016, 38(4):1099-1105.] [55] Xue Na, Li Hongjing, Sun Guangjun. Discontinuous deformation analysis on pipe-soil contact of buried pipeline due to fault[J]. Chinese Quarterly of Mechanics, 2013, 34(2):324-330.[薛娜, 李鸿晶, 孙广俊. 跨断层埋地管线-土接触非连续变形分析[J]. 力学季刊, 2013, 34(2):324-330.] [56] Yang Hui, Wang Ting, Lei Zhengqiang, et al. Analysis on mechanical characteristics of buried pipeline under pipe-soil contact[J]. Oil Field Equipment, 2015, 44(7):44-47.[杨辉, 王婷, 雷铮强, 等. 管土接触作用下埋地管道力学分析[J]. 石油矿场机械, 2015, 44(7):44-47.] [57] Tang Liyun, Xi Jiami, Yang Gengshe. Adopting 3D contact element to simulate pile frozen soil interaction[J]. Journal of Xi'an University of Science and Technology, 2007, 27(3):337-340.[唐丽云, 奚家米, 杨更社. 引入三维接触单元模拟冻土与桩共同工作[J]. 西安科技大学学报, 2007, 27(3):337-340.] [58] Sun Houchao, Yang Ping, Wang Guoliang. Development of mechanical experimental system for interface layer between frozen soil and structure and its application[J]. Rock and Soil Mechanics, 2014, 35(12):3636-3643.[孙厚超, 杨平, 王国良. 冻土与结构接触界面层力学试验系统研制及应用[J]. 岩土力学, 2014, 35(12):3636-3643.] [59] Wang Yongping, Jin Huijun, Li Guoyu, et al. Secondary geohazards along the operating Mohe-Jagdaqi section of China-Russia Crude Oil Pipeline in permafrost regions:a case study on a seasonal frost mound at the Site MDX364[J]. Journal of Glaciology and Geocryology, 2015, 37(3):731-739.[王永平, 金会军, 李国玉, 等. 漠河-加格达奇段多年冻土区中俄原油管道运营以来的次生地质灾害研究——以MDX364处的季节性冻胀丘为例[J]. 冰川冻土, 2015, 37(3):731-739.] |