[1] Dong Siyan, Gao Xuejie. Long-term climate change:interpretation of IPCC fifth assessment report[J]. Progressus Inqusitiones de Mutation Climatis, 2014, 10(1):56-59.[董思言, 高学杰. 长期气候变化:IPCC第五次评估报告解读[J]. 气候变化研究进展, 2014, 10(1):56-59.] [2] Shen Yongping, Wang Guoya. Key findings and assessment results of IPCC WGI fifth assessment report[J]. Journal of Glaciology and Geocryology, 2013, 35(5):1068-1076.[沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013, 35(5):1068-1076.] [3] Stocker T F, Qin Dahe, Plattner G K, et al. IPCC 2013:summary for policymakers in climate change 2013:the physical science basis:contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK:Cambridge University Press, 2013. [4] Ye Baisheng, Ding Yongjian, Jiao Keqin, et al. The response of river discharge to climate warming in cold region over China[J]. Quaternary Sciences, 2012, 32(1):103-110.[叶柏生, 丁永建, 焦克勤, 等. 我国寒区径流对气候变暖的响应[J]. 第四纪研究, 2012, 32(1):103-110.] [5] Chen Chunyan, Li Yi, Li Qihang. Snow cover depth in Vrümqi region, Xinjiang:evolution and response to climate change[J]. Journal of Glaciology and Geocryology, 2015, 37(3):587-595.[陈春艳, 李毅, 李奇航. 新疆乌鲁木齐地区积雪深度演变规律及对气候变化的响应[J]. 冰川冻土, 2015, 37(3):587-595.] [6] Dahlke H E, Lyon S W, Jansson P, et al. Isotopic investigation of runoff generation in a glacierized catchment in northern Sweden[J]. Hydrological Processes, 2014, 28(3):1383-1398. [7] Shi Yafeng. Evolution of the cryosphere in the Tibet, China, and its relationship with the global change in the mid Quaternary[J]. Journal of Glaciology and Geocryology, 1998, 20(3):5-16.[施雅风. 第四纪中期青藏高原冰冻圈的演化及其与全球变化的联系[J]. 冰川冻土, 1998, 20(3):5-16.] [8] Kong Yanlong, Pang Zhonghe. Isotope hydrograph separation in alpine catchments:a review[J]. Journal of Glaciology and Geocryology, 2010, 32(3):619-625.[孔彦龙, 庞忠和. 高寒流域同位素径流分割研究进展[J]. 冰川冻土, 2010, 32(3):619-625.] [9] Qu Simin, Bao Weimin, Shi Peng, et al. Review on isotopic hydrograph separation[J]. Water Resource and Power, 2006, 24(1):80-83.[瞿思敏, 包为民, 石朋, 等. 同位素流量过程线分割研究进展与展望[J]. 水电能源科学, 2006, 24(1):80-83.] [10] Klaus J, Mcdonnell J J. Hydrograph separation using stable isotopes:review and evaluation[J]. Journal of Hydrology, 2013, 505(24):47-64. [11] Pinder G F, Jones J F. Determination of the ground-water component of peak discharge from the chemistry of total runoff[J]. Water Resources Research, 1969, 5(2):438-445. [12] Hubert P, Martin E, Meybeck M, et al. Aspects hydrologiques, géochimiques et sédimentologiques de la crue exceptionnelle de la Dranse du Chablais du 22 septembre 1968[J]. Archives des Sciences, 1969, 22(3):581-604. [13] Dincer T, Payne B R, Florkowski T, et al. Snowmelt runoff from measurements of tritium and oxygen-18[J]. Water Resources Research, 1970, 6(1):110-124. [14] He Yuanqing, Pang Hongxi, Lu Aigang, et al. Spatial and temporal variations of the stable isotopes in snowpacks and glacial runoff in different types of glacier areas in China[J]. Journal of Glaciology and Geocryology, 2006, 28(1):22-28.[何元庆, 庞洪喜, 卢爱刚, 等. 中国西部不同类型冰川区积雪及其融水径流中稳定同位素比率的时空变化及其气候效应[J]. 冰川冻土, 2006, 28(1):22-28.] [15] Penna D, Engel M, Mao L, et al. Tracer-based analysis of spatial and temporal variations of water sources in a glacierized catchment[J]. Hydrology and Earth System Sciences, 2014, 18(5):5271-5288. [16] Mazvimavi D, Meijerink A, Stein A. Prediction of base flows from basin characteristics:a case study from Zimbabwe[J]. Hydrological Sciences Journal, 2004, 49(4):703-715. [17] Pettyjohn W A, Henning R. Preliminary estimate of ground-water recharge rates, related streamflow and water quality in Ohio:project completion report 553[R]. Columbus, OH:Water Resources Center of Ohio State University, 1979. [18] Sloto R A, Crouse M Y. HYSEP, a computer program for streamflow hydrograph separation and analysis, water-resources investigations:report 96-4040[R]. Washington D.C.:US Geological Survey, 1996. [19] Eckhardt K. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods[J]. Journal of Hydrology, 2008, 352(1):168-173. [20] Nathan R J, McMahon T A. Evaluation of automated techniques for baseflow and recession analysis[J]. Water Resources Research, 1990, 26:1465-1473. [21] Eckhardt K. How to construct recursive digital filters for baseflow separation[J]. Hydrological Processes, 2005, 19(2):507-515. [22] Lin Kairong, Zhang Wenhua, Guo Shenglian. A new method for base flow hydrograph separation[J]. Journal of China Hydrology, 2006, 26(4):15-20.[林凯荣, 张文华, 郭生练. 流量过程线分割的新方法:应用分析[J]. 水文, 2006, 26(4):15-20.] [23] Arnold J G, Allen P M. Automated methods for estimating baseflow and ground water recharge from streamflow records[J]. Journal of the American Water Resources Association, 2007, 35(2):411-424. [24] Wenninger J, Uhlenbrook S, Tilch N, et al. Experimental evidence of fast groundwater responses in a hillslope/floodplain area in the Black Forest Mountains, Germany[J]. Hydrological Processes, 2004, 18(17):3305-3322. [25] Zhou J, Wu J, Liu S, et al. Hydrograph separation in the headwaters of the Shule River basin:combining water chemistry and stable isotopes[J/OL]. Advances in Meteorology, 2015[2016-02-03]. http://dx.doi.org/10.1155/2015/830306. [26] Sklash M G, Farvolden R N, Fritz P. A conceptual model of watershed response to rainfall, developed through the use of oxygen-18 as a natural tracer[J]. Canadian Journal of Earth Sciences, 1976, 13(2):271-283. [27] Sklash M G, Farvolden R N. The use of environmental isotopes in the study of high-runoff episodes in streams[M]. DeKalb, IL:North Illinois University Press, 1982:65-73. [28] Hugenschmidt C, Ingwersen J, Sangchan W, et al. A three-component hydrograph separation based on geochemical tracers in a tropical mountainous headwater catchment in northern Thailand[J]. Hydrology and Earth System Sciences, 2014, 18(2):525-537. [29] Rodriguez M, Ohlanders N, Mcphee J. Estimating glacier and snowmelt contributions to stream flow in a Central Andes catchment in Chile using natural tracers[J]. Hydrology & Earth System Sciences Discussions, 2014, 11(7):8949-8994. [30] Ohlanders N, Rodriguez M, Mcphee J. Stable water isotope variation in a Central Andean watershed dominated by glacier and snowmelt[J]. Hydrology & Earth System Sciences, 2013, 17(3):1035-1050. [31] Semenov M Y, Zimnik E A. A three-component hydrograph separation based on relationship between organic and inorganic component concentrations:a case study in Eastern Siberia, Russia[J]. Environmental Earth Sciences, 2015, 73(2):611-620. [32] Maurya A S, Shah M, Deshpande R D, et al. Hydrograph separation and precipitation source identification using stable water isotopes and conductivity:River Ganga at Himalayan foothills[J]. Hydrological Processes, 2011, 25(10):1521-1530. [33] Ma Long, Liu Tingxi, Ma Li, et al. The effect of climate change and human activities on the runoff in the upper and middle reaches of the Liaohe River, Inner Mongolia[J]. Journal of Glaciology and Geocryology, 2015, 37(2):470-479.[马龙, 刘廷玺, 马丽, 等. 气候变化和人类活动对辽河中上游径流变化的贡献[J]. 冰川冻土, 2015, 37(2):470-479.] [34] Cable J, Ogle K, Williams D. Contribution of glacier meltwater to streamflow in the Wind River Range, Wyoming, inferred via a Bayesian mixing model applied to isotopic measurements[J]. Hydrological Processes, 2011, 25(14):2228-2236. [35] Li Z, Qi F, Li J, et al. Environmental significance and hydrochemical processes at a cold alpine basin in the Qilian Mountains[J]. Environmental Earth Sciences, 2015, 73(8):4043-4052. [36] Pu T, He Y, Zhu G, et al. Characteristics of water stable isotopes and hydrograph separation in Baishui catchment during the wet season in Mt. Yulong region, south western China[J]. Hydrological Processes, 2013, 27(25):3641-3648. [37] Kong Y, Pang Z. Evaluating the sensitivity of glacier rivers to climate change based on hydrograph separation of discharge[J]. Journal of Hydrology, 2012, 434/435:121-129. [38] Fan Y, Chen Y, Li X, et al. Characteristics of water isotopes and ice-snowmelt quantification in the Tizinafu River, north Kunlun Mountains, Central Asia[J]. Quaternary International, 2014, 380/381:116-122. [39] Meng Y, Liu G. Stable isotopic information for hydrological investigation in Hailuogou watershed on the eastern slope of Mount Gongga, China[J]. Environmental Earth Sciences, 2013, 69(1):29-39. [40] Xing B, Liu Z, Liu G, et al. Determination of runoff components using path analysis and isotopic measurements in a glacier-covered alpine catchment (upper Hailuogou Valley) in Southwest China[J]. Hydrological Processes, 2015, 29(14):3065-3073. [41] Liu Y, Fan N, An S, et al. Characteristics of water isotopes and hydrograph separation during the wet season in the Heishui River, China[J]. Journal of Hydrology, 2008, 353(3/4):314-321. [42] Li Z, Feng Q, Liu W, et al. The stable isotope evolution in Shiyi Glacier system during the ablation period in the north of Tibetan Plateau, China[J]. Quaternary International, 2015, 380/381:262-271. [43] Yang Y, Xiao H, Wei Y, et al. Hydrological processes in the different landscape zones of alpine cold regions in the wet season, combining isotopic and hydrochemical tracers[J]. Hydrological Processes, 2012, 26(10):1457-1466. [44] Zhang Y H, Song X F, Wu Y Q. Use of oxygen-18 isotope to quantify flows in the upriver and middle reaches of the Heihe River, Northwestern China[J]. Environmental Geology, 2009, 58(3):645-653. [45] Boucher J, Carey S. Exploring runoff processes using chemical, isotopic and hydrometric data in a discontinuous permafrost catchment[J]. Hydrology Research, 2010, 41(6):508-519. [46] Munyaneza O, Wenninger J, Uhlenbrook S. Identification of runoff generation processes using hydrometric and tracer methods in a meso-scale catchment in Rwanda[J]. Hydrology & Earth System Sciences, 2012, 16(7):1991-2004. [47] Hill A R, Waddington J M. Analysis of storm run-off sources using oxygen-18 in a headwater swamp[J]. Hydrological Processes, 1993, 7(3):305-316. [48] Turner J V, Macpherson D K, Stokes R A. Hydrology and salinity in the Collie River basin, Western Australia:the mechanisms of catchment flow processes using natural variations in deuterium and oxygen-18[J]. Journal of Hydrology, 1987, 94(1):143-162. [49] Kendall C, Mcdonnell J J, Gu W. A look inside ‘black box’ hydrograph separation models:a study at the Hydrohill catchment[J]. Hydrological Processes, 2001, 15(10):1877-1902. [50] Rademacher L K, Clark J F, Clow D W, et al. Old groundwater influence on stream hydrochemistry and catchment response times in a small Sierra Nevada catchment:Sagehen Creek, California[J]. Water Resources Research, 2005, 41(2):1-10. [51] Koehler G, Wassenaar L I, Hendry M J. An automated technique for measuring δD and δ18O values of porewater by direct CO2 and H2 equilibration[J]. Analytical Chemistry, 2000, 72(22):5659-5664. [52] Berman E S F, Gupta M, Gabrielli C, et al. High-frequency field deployable isotope analyzer for hydrological applications[J]. Water Resources Research, 2009, 45(10):5803-5804. [53] Kirchner J W, Feng X, Neal C, et al. The fine structure of water-quality dynamics:the(high-frequency) wave of the future[J]. Hydrological Processes, 2004, 18(7):1353-1359. [54] Birkel C, Dunn S M, Tetzlaff D, et al. Assessing the value of high-resolution isotope tracer data in the stepwise development of a lumped conceptual rainfall-runoff model[J]. Hydrological Processes, 2010, 24(16):2335-2348. |