[1] Haeberli W, Hoelzle M, Paul F, et al. Integrated monitoring of mountain glaciers as key indicators of global climate change:the European Alps[J]. Annals of Glaciology, 2007, 46:150-160. [2] Oerlemans J. Quantifying global warming from the retreat of glaciers[J]. Science, 1994, 264(5156):243-245. [3] Cuffey K M, Paterson W S B. The physics of glaciers[M]. 4th ed. Oxford:Elsevier, 2010. [4] Oerlemans J. Glaciers and climate change[M]. Lisse:Balkema Publishers, 2001. [5] Kääb A, Berthier E, Nuth C, et al. Contrasting patterns of early twenty first century glacier mass change in the Himalayas[J]. Nature, 2012, 488(7412):495-498. [6] Zhang Yingsong, Liu Shiyin, Shangguan Donghui, et al. Thinning and shrinkage of Laohugou No.12 Glacier in the western Qilian Mountains, China, from 1957 to 2007[J]. Journal of Mountain Science, 2012, 9(3):343-350. [7] Jing Zhefan, Wang Kun, Liu Li. Movement and variation of four typical glaciers in the Qilian Mountains, northwestern China[J]. Sciences in Cold and Arid Regions, 2015, 7(3):206-211. [8] Liu Shiyin, Shen Yongping, Sun Wenxin, et al. Glacier variation since the maximum of the little ice age in the western Qilian Mountains, Northwest China[J]. Journal of Glaciology and Geocryology, 2002, 24(3):227-233.[刘时银, 沈永平, 孙文新, 等. 祁连山西段小冰期以来的冰川变化研究[J]. 冰川冻土, 2002, 24(3):227-233.] [9] Liu Yushuo, Qin Xiang, Du Wentao, et al. Analysis of the movement features of the Laohugou Glacier No.12 in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2010, 32(3):475-479.[刘宇硕, 秦翔, 杜文涛, 等. 祁连山老虎沟12号冰川运动特征分析[J]. 冰川冻土, 2010, 32(3):475-479.] [10] Wang Yuzhe, Ren Jiawen, Qin Dahe, et al. Regional glacier volume change derived from satellite data:a case study in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(3):583-0592.[王玉哲, 任贾文, 秦大河, 等. 利用卫星资料反演区域冰川冰量变化的尝试——以祁连山为例[J]. 冰川冻土, 2013, 35(3):583-592.] [11] Du Wentao, Qin Xiang, Liu Yushuo, et al. Variation of the Laohugou Glacier No.12 in the Qilian Mountains from 1958 to 2005[J]. Journal of Glaciology and Geocryology, 2008, 30(3):373-379.[杜文涛, 秦翔, 刘宇硕, 等. 1958-2005年祁连山老虎沟12号冰川变化特征研究[J]. 冰川冻土, 2008, 30(3):373-379.] [12] Chen Jizu, Qin Xiang, Wu Jinkui, et al. Simulating the energy and mass balances on the Laohugou Glacier No.12 in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36(1):38-47.[陈记祖, 秦翔, 吴锦奎, 等. 祁连山老虎沟12号冰川表面能量和物质平衡模拟[J]. 冰川冻土, 2014, 36(1):38-47.] [13] Sun Weijun, Qin Xiang, Ren Jiawen, et al. The surface energy budget in the accumulation zone of the Laohugou Glacier No.12 in the western Qilian Mountains, China, in summer 2009[J]. Arctic, Antarctic and Alpine Research, 2012, 44(3):296-305. [14] Sun Weijun, Qin Xiang, Ren Jiawen, et al. Surface energy balance in the accumulation zone of the Laohugou Glacier No.12 in the Qilian Mountains during Ablation Period[J]. Journal of Glaciology and Geocryology, 2011, 33(1):38-46.[孙维君, 秦翔, 任贾文, 等. 祁连山老虎沟12号冰川积累区消融期能量平衡特征[J]. 冰川冻土, 2011, 33(1):38-46.] [15] Wu Zhen, Zhang Shiqiang, Liu Shiyin, et al. Structural characteristics of the No.12 Glacier in Laohugou valley, Qilian Mountain based on the ground penetrating radar combined with FDTD simulation[J]. Advances in Earth Science, 2011, 26(6):631-641.[武震, 张世强, 刘时银, 等. 祁连山老虎沟12号冰川冰内结构特征分析[J]. 地球科学进展, 2011, 26(6):631-641.] [16] Qin Xiang, Chen Jizu, Wang Shengjie, et al. Reconstruction of surface air temperature in a glaciated region in the western Qilian Mountains, Tibetan Plateau, 1957-2013 and its variation characteristics[J]. Quaternary International, 2015, 371:22-30. [17] Lan Yongchao, Shen Yongping, Gao Qianzhao, et al. Changes of climate and runoff in mountain area of Danghe River basin under global warming[J]. Journal of Glaciology and Geocryology, 2011, 33(6):1259-1267.[蓝永超, 沈永平, 高前兆, 等. 祁连山西段党河山区流域气候变化及其对出山径流的影响与预估[J]. 冰川冻土, 2011, 33(6):1259-1267.] [18] Paul F, Bolch T, Kääb A, et al. The glaciers climate change initiative:methods for creating glacier area, elevation change and velocity products[J]. Remote Sensing of Environment, 2015, 162:408-426. [19] Lee H, Shum C K, Tseng K H, et al. Elevation changes of Bering Glacier System, Alaska, from 1992 to 2010, observed by satellite radar altimetry[J]. Remote Sensing of Environment, 2013, 132:40-48. [20] Neckel N, Braun A, Kropacek J, et al. Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry[J]. Cryosphere, 2013, 7(5):1623-1633. [21] Nuth C, Moholdt G, Kohler J, et al. Svalbard glacier elevation changes and contribution to sea level rise[J]. Journal of Geophysical Research, 2010, 115:1-16. [22] Liu Lin, Jiang Liming, Sun Yafei, et al. Glacier elevation changes (2012-2016) of the Puruogangri Ice Field on the Tibetan Plateau derived from bi-temporal TanDEM-X InSAR data[J]. International Journal of Remote Sensing, 2016, 37(24):5687-5707. [23] Rankl M, Braun M. Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models[J]. Annals of Glaciology, 2016, 51(71):273-281. [24] Vijay S, Braun M. Elevation Change Rates of Glaciers in the Lahaul-Spiti (Western Himalaya, India) during 2000-2012 and 2012-2013[J]. Remote Sensing, 2016, 8(12). DOI:10.3390/rs8121038. [25] Zhang Qibing, Zhang Guoshuai. Glacier elevation changes in the western Nyainqentanglha Range of the Tibetan Plateau as observed by TerraSAR-X/TanDEM-X images[J]. Remote Sensing Letters, 2017, 8(12):1143-1152. [26] Neckela N, Niklas N, Loibl D, et al. Recent slowdown and thinning of debris-covered glaciers in south-eastern Tibet[J]. Earth and Planetary Science Letters, 2017, 464:95-102. [27] Li Jing, Liu Shiying, Shangguan Donghui, et al. Identification of ice elevation change of the Shuiguan River No.4 Glacier in the Qilian Mountains, China[J]. Journal of Mountain Science, 2010, 7(4):375-379. [28] Wang Puyu, Li Zhongqin, Gao Wenyu. Rapid shrinking of glaciers in the middle Qilian Mountain region of Northwest China during the Last-50 years[J]. Journal of Earth Science, 2011, 22(4):539-548. [29] Cao Bo, Pan Baotian, Gao Hongshan, et al. Glacier variation in the lenglongling range of eastern Qilian Mountains from 1972 to 2007[J]. Journal of Glaciology and Geocryology, 2010, 32(2):242-248.[曹泊, 潘保田, 高红山, 等. 1972-2007年祁连山东段冷龙岭现代冰川变化研究[J]. 冰川冻土, 2010, 32(2):242-248.] [30] Liu Yushuo, Qin Xiang, Zhang Tong, et al. Variation of the Ningchan River Glacier No.3 in the Lenglongling range, east Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2012, 34(5):1031-1036.[刘宇硕, 秦翔, 张通, 等. 祁连山东段冷龙岭地区宁缠河3号冰川变化研究[J]. 冰川冻土, 2012, 34(5):1031-1036.] [31] Pu Jianchen, Yao Tandong, Duan Keqin, et al. Mass balance of the Qiyi Glacier in the Qilian Mountains:a new observation[J]. Journal of Glaciology and Geocryology, 2005, 27(2):199-204.[蒲健辰, 姚檀栋, 段克勤, 等. 祁连山七一冰川物质平衡的最新观测结果[J]. 冰川冻土, 2005, 27(2):199-204.] [32] Tian Hongzhen, Yang Taibao, Liu Qinping. Climate change and glacier retreat in Ganggexiaoheli, middle Qilian Mountains using remote sensing data, 1976-2010[J]. Journal of Arid Land Resources and Environment, 2012, 26(7):41-46.[田洪阵, 杨太保, 刘沁萍. 1976-2010年祁连山中段岗格尔肖合力雪山冰川退缩和气候变化的关系研究[J]. 干旱区资源与环境, 2012, 26(7):41-46.] [33] Wang Puyu, Li Zhongqin, Gao Wenyu, et al. Glacier changes in the Heihe River basin over the past 50 years in the context of climate change[J]. Resources Sciences, 2011, 33(3):41-46.[王璞玉, 李忠勤, 高闻宇, 等. 气候变化背景下近50年来黑河流域冰川资源变化特征分析[J]. 资源科学, 2011, 33(3):399-407.] [34] Shi Yafeng, Shen Yongping, Hu Ruji. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in Northwest China[J]. Journal of Glaciology and Geocryology, 2002, 24(3):219-226.[施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 2002, 24(3):219-226.] [35] Yu Guobin, Li Zhongqin, Wang Puyu. Glacier changes at the Daxue Mountain and Danghenan Mountain of west Qilian Mountains in recent 50 years[J]. Arid Land Geography, 2014, 37(2):299-309.[于国斌, 李忠勤, 王璞玉. 近50 a祁连山西段大雪山和党河南山的冰川变化[J]. 干旱区地理, 2014, 37(2):299-309.] [36] Krieger G, Moreira A, Fiedler H, et al. TanDEM-X:a satellite formation for high-resolution SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11):3317-3341. [37] Bolch T, Pieczonka T, Benn D I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery[J]. The Cryosphere, 2011, 5:349-358. [38] Li Jia, Li Zhiwei, Zhu Jianjun, et al. Early 21st Century glacier thickness changes in the Central Tien Shan[J]. Remote Sensing of Environment, 2017, 192:12-29. [39] Huss M. Density assumptions for converting geodetic glacier volume change to mass change[J]. The Cryosphere, 2013, 7:877-887. [40] Yao Tandong, Thompson L, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9):663-667. [41] Guo Zhongming, Wang Ninglian, Wu Hongbo, et al. Variations in firn line altitude and firn zone area on Qiyi Glacier, Qilian Mountains, over the period of 1990 to 2011[J]. Arctic, Antarctic, and Alpine Research, 2015, 47(2):293-300. [42] Cao Bo, Pan Baotian, Wang Jie, et al. Changes in the glacier extent and surface elevation along the Ningchan and Shuiguan River source, eastern Qilian Mountains, China[J]. Quaternary Research, 2014, 81:531-537. |