[1] Lai Yuanming, Jin Long, Chang Xiaoxiao. Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil[J]. International Journal of Plasticity, 2009, 25(6):1177-1205. [2] Lai Yuanming, Yang Yugui, Chang Xiaoxiao, et al. Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics[J]. International Journal of Plasticity, 2010, 26(10):1461-1484. [3] Li Shuangyang, Lai Yuanming, Zhang Mingyi, et al. Seasonal differences in seismic responses of embankment on a sloping ground in permafrost regions[J]. Soil Dynamics and Earthquake Engineering, 2015, 76:122-135. [4] Li Shuangyang, Zhang Shujuan, Zhao De'an, et al. Dynamical analysis model for frozen embankment and seismic hazard assessment of Qinghai-Tibet Railway[J]. Rock and Soil Mechanics, 2010, 31(7):2179-2188.[李双洋, 张淑娟, 赵德安, 等. 冻土路基动力分析模型及青藏铁路地震灾害评估[J]. 岩土力学, 2010, 31(7):2179-2188.] [5] Niu Yaqiang, Lai Yuanming, Wang Xu, et al. Experimental study on triaxial compressive strength and deformation behaviors of frozen silty clay[J]. Journal of Glaciology and Geocryology, 2016, 38(2):424-430.[牛亚强, 赖远明, 王旭, 等. 冻结粉质黏土三轴抗压强度和变形特性试验研究[J]. 冰川冻土, 2016, 38(2):424-430.] [6] Yin Nan, Li Shuangyang, Pei Wansheng, et al. Analysis of microscopic deformation mechanism of triaxial test of frozen clay by discrete element method[J]. Journal of Glaciology and Geocryology, 2016, 38(1):178-185.[尹楠, 李双洋, 裴万胜, 等. 冻结黏土三轴试验微观变形机理的离散元分析[J]. 冰川冻土, 2016, 38(1):178-185.] [7] Xu Xiangtian, He Yang, Hu Kai, et al. Experimental study on strength and deformation indicators of frozen silty sand with sodium sulfate[J]. Journal of Glaciology and Geocryology, 2016, 38(4):988-995.[徐湘田, 何扬, 胡凯, 等. 含硫酸钠盐冻结粉砂强度与变形指标的试验研究[J]. 冰川冻土, 2016, 38(4):988-995.] [8] Zeng Guijun, Zhang Mingyi, Li Zhenping, et al. Review of mechanical criterion for formation of ice lens in freezing soil[J]. Journal of Glaciology and Geocryology, 2015, 37(1):192-201.[曾桂军, 张明义, 李振萍, 等. 正冻土中冰棱镜体形成力学判据的分析讨论[J]. 冰川冻土, 2015, 37(1):192-201.] [9] Zheng Yun, Ma Wei, Bing Hui. Impact of freezing and thawing cycles on the structures of soil and a quantitative approach[J]. Journal of Glaciology and Geocryology, 2015, 37(1):132-137.[郑郧, 马巍, 邴慧. 冻融循环对土结构性影响的机理与定量研究方法[J]. 冰川冻土, 2015, 37(1):132-137.] [10] Chen Lin, Yu Wenbing, Han Fenglei, et al. Impact of aeolian sand on cooling effect of crushed-rock embankment of Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2015, 37(1):147-155.[陈琳, 喻文兵, 韩风雷, 等. 风积沙对青藏铁路块碎石路基降温效果的影响[J]. 冰川冻土, 2015, 37(1):147-155.] [11] Hou Yandong, Wu Qingbai, Sun Zhizhong, et al. The coupled reinforcing effect of crushed rock slope protection and thermosyphons in Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2015, 37(1):118-125.[侯彦东, 吴青柏, 孙志忠, 等. 青藏铁路碎石护坡-热管复合措施的补强效果研究[J]. 冰川冻土, 2015, 37(1):118-125.] [12] Liu Naifei, Li Ning, He Min, et al. Analyzing the factors controlling the bearing capacity of cast-in-place piles based on a thermo-hydro-mechanical coupling model[J]. Journal of Glaciology and Geocryology, 2014, 36(6):1471-1478.[刘乃飞, 李宁, 何敏, 等. 基于水-热-力耦合模型的钻孔灌注桩承载力影响因素分析[J]. 冰川冻土, 2014, 36(6):1471-1478.] [13] Wu Ziwang, Ma Wei. Strength and creep of frozen soil[M]. Lanzhou:Lanzhou University Press, 1994.[吴紫汪, 马巍. 冻土强度与蠕变[M]. 兰州:兰州大学出版社, 1994.] [14] Huang J T, Airey D W. Properties of artificially cemented carbonate sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(6):492-499. [15] Ismail M A, Joer H A, Sim W H, et al. Effect of cement type on shear behavior of cemented calcareous soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(6):520-529. [16] Oda M, Konish J, Nemat N S. Experimental micromechanical evaluation of strength of granular materials:effect of particle rolling[J]. Mechanics of Materials, 1982, 1(4):269-283. [17] Wang Y H, Leung S C. A particulate scale investigation of cemented sand behavior[J]. Canadian Geotechnical Journal, 2008, 45(1):29-44. [18] Ma Wei, Wu Ziwang, Chang Xiaoxiao, et al. Monitoring the change of structure in frozen soil under confining pressures by electron microscope[J]. Journal of Glaciology and Geocryology, 1995, 17(2):152-158.[马巍, 吴紫汪, 常小晓, 等. 围压作用下冻结砂土微结构变化的电镜分析[J]. 冰川冻土, 1995, 17(2):152-158.] [19] Ma Ling, Qi Jilin, Yu Fan, et al. Particle crushing of frozen sand under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3):544-550.[马玲, 齐吉琳, 余帆, 等. 冻结砂土三轴试验中颗粒破碎研究[J]. 岩土工程学报, 2015, 37(3):544-550.] [20] Zhou Fengxi, Lai Yuanming. Simulation of mechanical behavior for frozen sand clay by discrete element method[J]. Rock and Soil Mechanics, 2010, 31(12):4016-4020.[周凤玺, 赖远明. 冻结砂土力学性质的离散元模拟[J]. 岩土力学, 2010, 31(12):4016-4020.] [21] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1):47-65. [22] Zhou Jiazuo, Wei Changfu, Wei Houzhen. Experimental and theoretical characterization of frost heave and ice lenses[J]. Cold Regions Science and Technology, 2014, 104/105(3):76-87. [23] Lai Yuanming, Xu Xiangtian, Yu Wenbing, et al. An experimental investigation of the mechanical behavior and a hyperplastic constitutive model of frozen loess[J]. International Journal of Engineering Science, 2014, 84:29-53. [24] Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8):1329-1364. [25] Iwashita K, Oda M. Rolling resistance at contacts in simulation of shear band development by DEM[J]. Journal of Engineering Mechanics, 1998, 124(3):285-292. [26] Sun Qicheng, Wang Guangqian. An introduction to mechanics of granular material[M]. Beijing:Science Press, 2009.[孙其诚, 王光谦. 颗粒物质力学导论[M]. 北京:科学出版社, 2009.] [27] Exadaktylos G E, Vardoulakis I G. Bifurcations, instabilities, degradation in geomechanics[M]. Berlin, Germany:Springer, 2007. [28] Zhou Jian, Jia Mincai. Geotechnical microscopic model experiment and numerical simulation[M]. Beijing:Science Press, 2008.[周健, 贾敏才. 土工细观模型试验与数值模拟[M]. 北京:科学出版社, 2008.] |